5 research outputs found

    Protective Effects of Aryl Hydrocarbon Receptor Signaling in Celiac Disease Mucosa and in Poly I:C-Induced Small Intestinal Atrophy Mouse Model

    Get PDF
    Aryl hydrocarbon receptor (AhR), a transcription factor activated by a large number of natural and synthetic agents, modulates the activity of immune cells in the gut and represents an important link between the environment and immune-mediated pathologies. In this study, we investigated the role of AhR in celiac disease (CD), a gluten-driven enteropathy. AhR expression was evaluated in intestinal biopsies taken from patients with CD and controls by real-time polymerase chain reaction (PCR), immunohistochemistry and flow cytometry. AhR was also analyzed in ex vivo organ cultures of duodenal biopsies taken from inactive CD patients incubated in presence or absence of peptic-tryptic digest of gliadin. IFN-γ, TNF-α, granzyme B, and perforin expression was evaluated in anti-CD3/CD28-activated intestinal lamina propria mononuclear cells (LPMC) and intestinal intra-epithelial cells (IEL) of active CD patients cultured in the presence or absence of the AhR agonist 6-formylindolo(3, 2-b)carbazole (Ficz). Finally, the protective role of AhR was evaluated in a mouse model of poly I:C-driven small intestine damage. AhR RNA transcripts were reduced in active CD samples as compared to inactive CD and normal controls. Flow cytometry confirmed such results and showed a reduction of AhR in both IEL and LPMC of active CD patients. The addition of a peptic-tryptic digest of gliadin to ex vivo organ cultures of duodenal biopsies taken from inactive CD patients reduced AhR expression. Treatment of CD IEL and LPMC with Ficz reduced the levels of inflammatory cytokines, granzyme B and perforin. Mice injected with Ficz were protected against poly I:C-induced intestinal lesions. Our findings suggest that defective AhR-driven signals could contribute to amplify pathogenic responses in the gut of CD patients

    Defective expression of scavenger receptors in celiac disease mucosa.

    No full text
    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder
    corecore