4 research outputs found

    Novel Highly Efficient Antibacterial Chitosan-Based Films

    No full text
    In this study, we elaborated new chitosan-based films reinforced by iron(III)-containing chitosan nanoparticles Fe(III)-CS-NPs at different concentrations. We found that the optimum concentration of Fe(III)-CS-NPs for the improvement of antibacterial and mechanical properties of the films was 10% (σb = ca. 8.8 N/mm2, Δb = ca. 41%, inhibition zone for S. aureus = ca. 16.8 mm and for E. coli = ca. 11.2 mm). Also, using the click-chemistry approach (thiol–ene reaction), we have synthesized a novel water-soluble cationic derivative of chitin. The addition of this derivative of chitin to the chitosan polymer matrix of the elaborated film significantly improved its mechanical (σb = ca. 11.6 N/mm2, Δb = ca. 75%) and antimicrobial (inhibition zone for S. aureus = ca. 19.6 mm and for E. coli = ca. 14.2 mm) properties. The key mechanism of the antibacterial action of the obtained films is the disruption of the membranes of bacterial cells. The elaborated antibacterial films are of interest for potential biomedical and food applications

    Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies

    No full text
    Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,Nâ€Č-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer

    Novel Highly Efficient Green and Reusable Cu(II)/Chitosan-Based Catalysts for the Sonogashira, Buchwald, Aldol, and Dipolar Cycloaddition Reactions

    No full text
    In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated systems in various organic transformations were evaluated. The use of copper sulfate as the source of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the generation of conventional coarse-grained powder. Cholesterol-containing systems have proven to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira, Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions proceed selectively, and the isolation of the product does not require column chromatography. The product is separated from the catalyst by simple filtration or centrifugation

    Rhodamine B-Containing Chitosan-Based Films: Preparation, Luminescent, Antibacterial, and Antioxidant Properties

    No full text
    In this study, Rhodamine B-containing chitosan-based films were prepared and characterized using their mechanical, photophysical, and antibacterial properties. The films were synthesized using the casting method and their mechanical properties, such as tensile strength and elongation at break, were found to be dependent on the chemical composition and drying process. Infrared spectroscopy and X-ray diffraction analysis were used to examine the chemical structure and degree of structural perfection of the films. The photophysical properties of the films, including absorption spectra, fluorescence detection, emission quantum yields, and lifetimes of excited states, were studied in detail. Rhodamine B-containing films exhibited higher temperature sensitivity and showed potential as fluorescent temperature sensors in the physiological range. The antibacterial activity of the films was tested against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli, with Rhodamine B-containing films demonstrating more pronounced antibacterial activity compared to blank films. The findings suggest that the elaborated chitosan-based films, particularly those containing Rhodamine B can be of interest for further research regarding their application in various fields such as clinical practice, the food industry, and agriculture due to their mechanical, photophysical, and antibacterial properties
    corecore