139 research outputs found
Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film
Recent experiments by several groups have uncovered a novel fingering instability in the spreading of surface active material on a thin liquid film. The mechanism responsible for this instability is yet to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we have investigated the linear stability of a coupled set of equations describing the Marangoni spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these base flows can successfully heal perturbations of all wavenumbers. The details of this analysis suggest, however, a mechanism by which the spreading can be destabilized. We propose how the inclusion of additional forces acting on the surfactant coated spreading film might give rise to regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows
Growth of non-modal transient structures during the spreading of surfactant coated films
The spreading of surfactant coated thin liquid films is often accompanied by an instability producing significant film corrugation, fingering and branching. Marangoni stresses, responsible for the rapid and spontaneous spreading, are suspected as the main cause of unstable flow. Traditional eigenvalue analysis of a self-similar solution describing Marangoni driven spreading has predicted only stable modes. We present results of a transient growth study which reveals enormous amplification of initially infinitesimal disturbances in the film thickness. This analysis provides, for the first time, evidence of an instability resembling experimental patterns
Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures
We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin liquid film to small disturbances in the film thickness and surfactant concentration. The surface shear stress, which derives from variations in surfactant concentration at the air–liquid interface, rapidly drives liquid and surfactant from the source toward the distal region of higher surface tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading of a finite strip of surfactant on a thin Newtonian film has predicted only stable modes. [Dynamics in Small Confining Systems III, Materials Research Society Symposium Proceedings, edited by J. M. Drake, J. Klafter, and E. R. Kopelman (Materials Research Society, Boston, 1996), Vol. 464, p. 237; Phys. Fluids A 9, 3645 (1997); O. K. Matar Ph.D. thesis, Princeton University, Princeton, NJ, 1998]. A perturbation analysis of the transient behavior, however, has revealed the possibility of significant amplification of disturbances in the film thickness within an order one shear time after the onset of flow [Phys. Fluids A 10, 1234 (1998); "Transient response of a surfactant monolayer spreading on a thin liquid film: Mechanism for amplification of disturbances," submitted to Phys. Fluids]. In this paper we describe the linearized transient behavior and interpret which physical parameters most strongly affect the disturbance amplification ratio. We show how the disturbances localize behind the moving front and how the inclusion of van der Waals forces further enhances their growth and lifetime. We also present numerical solutions to the fully nonlinear 2D governing equations. As time evolves, the nonlinear system sustains disturbances of longer and longer wavelength, consistent with the quasi-steady state and transient linearized descriptions. In addition, for the parameter set investigated, disturbances consisting of several harmonics of a fundamental wavenumber do not couple significantly. The system eventually singles out the smallest wavenumber disturbance in the chosen set. The summary of results to date seems to suggest that the fingering process may be a transient response which nonetheless has a dramatic influence on the spreading process since the digitated structures redirect the flux of liquid and surfactant to produce nonuniform surface coverage
The development of transient fingering patterns during the spreading of surfactant coated films
The spontaneous spreading of an insoluble surfactant monolayer on a thin liquid film produces a complex waveform whose time variant shape is strongly influenced by the surface shear stress. This Marangoni stress produces a shocklike front at the leading edge of the spreading monolayer and significant film thinning near the source. For sufficiently thin films or large initial shear stress, digitated structures appear in the wake of the advancing monolayer. These structures funnel the oncoming flow into small arteries that continuously tip-split to produce spectacular dendritic shapes. A previous quasisteady modal analysis has predicted stable flow at asymptotically long times [Phys. Fluids A 9, 3645 (1997)]. A more recent transient analysis has revealed large amplification in the disturbance film thickness at early times [O. K. Matar and S. M. Troian, "Growth of nonmodal transient structures during the spreading of surfactant coated films," Phys. Fluids A 10, 1234 (1998)]. In this paper, we report results of an extended sensitivity analysis which probes two aspects of the flow: the time variant character of the base state and the non-normal character of the disturbance operators. The analysis clearly identifies Marangoni forces as the main source of digitation for both small and large wave number disturbances. Furthermore, initial conditions which increase the initial shear stress or which steepen the shape of the advancing front produce a larger transient response and deeper corrugations in the film. Disturbances applied just ahead of the deposited monolayer rapidly fall behind the advancing front eventually settling in the upstream region where their mobility is hampered. Recent findings confirm that additional forces which promote film thinning can further intensify disturbances [O. K. Matar and S. M. Troian, "Spreading of surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures," Chaos 9, 141 (1999). The transient analysis presented here corroborates our previous results for asymptotic stability but reveals a source for digitation at early times. The energy decomposition lends useful insight into the actual mechanisms preventing efficacious distribution of surfactant
Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment
We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin viscous layer under the action of a tangential (Marangoni) surface stress. Refracted image Moiré topography is used to monitor the evolution of the surface slope over macroscopic distances, from which the time variant interface shape and advancing speed of the surfactant film are inferred. The interfacial profile exhibits a strong surface depression ahead of the surfactant source capped by an elevated rim at the surfactant leading edge. The surface slope and shape as well as the propagation characteristics of the advancing rim can be compared directly with theoretical predictions. The agreement is quite strong when the model allows for a small level of pre-existing surface contamination of the initial liquid layer. Comparison between theoretical and experimental profiles reveals the importance of the initial shear stress in determining the evolution in the film thickness and surfactant distribution. This initial stress appears to thin the underlying liquid support so drastically that the surfactant droplet behaves as a finite and not an infinite source, even though there is always an excess of surfactant present at the origin
Influence of combined empirical functions on slug flow predictions of pipelines with variable inclinations.
Prediction of internal multiphase flows in subsea pipelines is an integral part of the oil and gas production system design. High mass and pressure fluctuations are often encountered during the operation with a liquid-gas slug flow regime exhibiting a sequence of long gas bubbles and aerated liquid slugs. It is important for industry to realistically identify the slug flow occurrence and predict slug flow characteristics, depending on several multiphase flow-pipe parameters. These may be achieved using a one-dimensional, steady-state, mechanistic model accounting for a mass and momentum balance of the two liquid-gas fluids within a controlled volume often referred to as a slug unit. By reducing a 3-D flow problem to a 1-D one, several empirical or closure correlations and associated empirical coefficients have been introduced in the literature and used in commercial software predicting slug flows in subsea jumpers, pipelines and risers with variable inclinations. This study aims to investigate the influence of combined 25 closure functions on the predictions of slug flows in horizontal and inclined pipes based on a steady-state mechanistic model for a wide range of superficial liquid and gas velocities. The model with studied closures is implemented by the authors of this study as the numerical tool iSLUG. The model performance is verified with respect to the estimated film liquid holdup, film length and pressure drop per length of a slug unit for an empirically specified translational velocity, slug liquid holdup, slug liquid length and pipe wall wettability. Closure combinations are analyzed using the relative performance factors and compared against available experimental data in order to identify a set of functions suitable for upward, downward and horizontal flows, and the effect of diameter and inclination on the model prediction is considered. The present method and analysis outcomes may further contribute to the improvement of transient liquid-gas flow models to predict more practical cases
Data-driven modelling for drop size distributions
The prediction of the drop size distribution (DSD) resulting from liquid
atomization is key to the optimization of multi-phase flows, from gas-turbine
propulsion, through agriculture, to healthcare. Obtaining high-fidelity data of
liquid atomization, either experimentally or numerically, is expensive, which
makes the exploration of the design space difficult. First, to tackle these
challenges, we propose a framework to predict the DSD of a liquid spray based
on data as a function of the spray angle, the Reynolds number, and the Weber
number. Second, to guide the design of liquid atomizers, the model accurately
predicts the volume of fluid contained in drops of specific sizes whilst
providing uncertainty estimation. To do so, we propose a Gaussian process
regression (GPR) model, which infers the DSD and its uncertainty form the
knowledge of its integrals, and of its first moment, i.e., the mean drop
diameter. Third, we deploy multiple GPR models to estimate these quantities at
arbitrary points of the design space from data obtained from a large number of
numerical simulations of a flat fan spray. The kernel used for reconstructing
the DSD incorporates prior physical knowledge, which enables the prediction of
sharply peaked and heavy-tailed distributions. Fourth, we compare our method
with a benchmark approach, which estimates the DSD by interpolating the
frequency polygon of the binned drops with a GPR. We show that our integral
approach is significantly more accurate, especially in the tail of the
distribution (i.e., large, rare drops), and it reduces the bias of the density
estimator by up to ten times. Finally, we discuss physical aspects of the
model's predictions and interpret them against experimental results from the
literature. This work opens opportunities for modelling drop size distribution
in multiphase flows from data.Comment: 18 pages, 9 figure
- …