3 research outputs found

    Assessment of Ge-doped optical fibres subjected to x-ray irradiation

    Get PDF
    We have reported the thermoluminescence (TL) response of five different diameters ∼120, 241, 362, 483, and 604 μm of 6 mol percent Ge-doped optical fibres. The perfomance of the Ge-doped optical fibre are compared with commercially available TLD-100 chips (LiF:Mg,Ti) in terms of their sensitivity and minimum detectable dose (MDD). The irradiation was performed using X-ray machine (Model ISO 'Narrow Spectrum Series') provided by the Malaysian Nuclear Agency (MNA) at 60 kV X-ray irradiation in low doses ranging from 1-10 mGy. The results show the linear TL dose response from the fibres up to 10 mGy. The smallest diameter of 120 pm optical fibre shows the highest TL dose response compared to above mentioned fibres. The minimum detectable dose (MDD) is 0.82, 0.20, 0.14, 0.08, and 0.13 mGy for Ge-doped with diameters of 120, 241, 362, 483 and 604 μm. All TL materials show the MDD value within the delivered dose 0.01-1.00 mGy subjected to x-ray irradiation. The Ge-doped fibre with diameter of 483 pm was matched the MDD value of TLD-100 chips that equivalent to 0.08 mGy at the same irradiation. We have observed that among the five different diameters of optical fibre, 120 μm shows the best results and its better response than TLD-100 chips (by a factor of 5). The linear response at low dose levels makes this optical fibre most suitable for medical applicatio

    Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations

    No full text
    We describe the efforts of finding a new thermoluminescent (TL) media using pure silica flat optical fiber (FF). The present study investigates the dose response, sensitivity, minimum detectable dose and glow curve of FF subjected to 9. MeV electron irradiations with various dose ranges from 0 Gy to 2.5 Gy. The above-mentioned TL properties of the FF are compared with commercially available TLD-100 rods. The TL measurements of the TL media exhibit a linear dose response over the delivered dose using a linear accelerator. We found that the sensitivity of TLD-100 is markedly 6 times greater than that of FF optical fiber. The minimum detectable dose was found to be 0.09 mGy for TLD-100 and 8.22 mGy for FF. Our work may contribute towards the development of a new dosimeter for personal monitoring purposes

    Thermoluminescent response of single mode optical fibre to x-ray irradiation

    No full text
    We present the characteristics of the thermoluminescence (TL) response of single mode optical fibre (SMF) subjected to 30 and 70 kV x-ray irradiation. The TL responses are compared with commercially available TLD-100 (rod types). The SMF and TLD-100 were irradiated with x-ray source by using X-rays Generator model Phillips MG 165 located at Malaysian Nuclear Agency. The SMF and TLD-100 show linear dose response subjected to 30 and 70 kV x-ray irradiation. The SMF shows TL response by 10 times and 8 times greater than TLD-100 for the above-mentioned energies. The TL sensitivity characteristics of SMF show promising results to be introduced as a TL dosimeter material. The SMF could be used in several applications in the fields of medicine, industry, and research purposes
    corecore