84 research outputs found
Sensory conflict in motion sickness: An observer theory approach
Motion sickness is the general term describing a group of common nausea syndromes originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferent, or overstimulation of the vestibular organs of the inner ear. Sea-, car-, and airsicknesses are the most commonly experienced examples. However, the discovery of other variants such as Cinerama-, flight simulator-, spectacle-, and space sickness in which the physical motion of the head and body is normal or absent has led to a succession of sensory conflict theories which offer a more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that neutral and/or humoral signals originate in regions of the brain subversing spatial orientation, and that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately, the present understanding of the neurophysiological basis of motion sickness is far from complete. No sensory conflict neuron or process has yet been physiologically identified. To what extent can the existing theory be reconciled with current knowledge of the physiology and pharmacology of nausea and vomiting. The stimuli which causes sickness, synthesizes a contemporary Observer Theory view of the Sensory Conflict hypothesis are reviewed, and a revised model for the dynamic coupling between the putative conflict signals and nausea magnitude estimates is presented. The use of quantitative models for sensory conflict offers a possible new approach to improving the design of visual and motion systems for flight simulators and other virtual environment display systems
Spatial orientation and navigation in microgravity
Manuscript for
Spatial Processing in Navigation, Imagery and Perception, F. Mast and L. Janeke, eds.This chapter summarizes the spatial disorientation problems and navigation difficulties described by astronauts and cosmonauts, and relates them to research findings on orientation and navigation in humans and animals. Spacecraft crew are uniquely free to float in any relative orientation with respect to the cabin, and experience no vestibular and haptic cues that directly indicate the direction of “down”. They frequently traverse areas with inconsistently aligned visual vertical cues. As a result, most experience “Visual Reorientation Illusions” (VRIs) where the spacecraft floors, walls and ceiling surfaces exchange subjective identities. The illusion apparently results from a sudden reorientation of the observer’s allocentric reference frame. Normally this frame realigns to local interior surfaces, but in some cases it can jump to the Earth beyond, as with “Inversion Illusions” and EVA height vertigo. These perceptual illusions make it difficult for crew to maintain a veridical perception of orientation and place within the spacecraft, make them more reliant upon landmark and route strategies for 3D navigation, and can trigger space motion sickness. This chapter distinguishes VRIs and Inversion Illusions, based on firsthand descriptions from Vostok, Apollo, Skylab, Mir, Shuttle and International Space Station crew. Theories on human “gravireceptor” and “idiotropic” biases, visual “frame” and “polarity” cues, top-down processing effects on object orientation perception, mental rotation and “direction vertigo” are discussed and related to animal experiments on limbic head direction and place cell responses. It is argued that the exchange in perceived surface identity characteristic of human VRIs is caused by a reorientation of the unseen allocentric navigation plane used by CNS mechanisms coding place and direction, as evidenced in the animal models. Human VRI susceptibility continues even on long flights, perhaps because our orientation and navigation mechanisms evolved to principally support 2D navigation.NASA Cooperative Research Agreement NCC9-58 with the National Space Biomedical Research Institut
Neurovestibular Effects of Long-Duration Spaceflight: A Summary of Mir-Phase 1 Experiences
Space motion sickness and associated neurovestibular dysfunction though not completely understood - have been relatively well clinically and operationally characterized on short-duration (1-2 week) Space Shuttle missions (Oman, et al, 1984, 1986; Thornton, et al, 1987; Reschke, et al, 1994). Between March 1995 and June 1998, seven NASA astronauts flew on the Russian Mir space station, as "Phase 1" of the joint effort to build the International Space Station, and provided NASA with invaluable experience on the operational and biomedical problems associated with flights of up to six months in duration. The goal of this paper is to provide a summary of the available information on neurovestibular dysfunction, space motion sickness, and readaptation to Earth's gravity on the NASA Mir flights, based on a set of medical questionnaire data, transcripts, and interviews which are available from the NASA-Mir Phase I program. Records were incomplete and anecdotal. All references to specific crewmembers have been removed, to respect their individual privacy. Material was excerpted from multiple sources of information relating to neurologic function, sensory illusions and motion sickness of NASA-Mir Phase I Program crewmembers. Data were compiled by epoch (in-flight vs landing/postflight) and grouped by neurovestibular topic. The information was recorded either contemporaneously during or within days after landing, or retrospectively weeks to months later. Space motion sickness symptoms are more intense and longer in duration. Sense of spatial orientation takes at least a month to become "natural and instinctive" in space station structures, but mental survey knowledge is apparently not completely developed even after 3 months in some cases. Visual reorientation illusions (VRI) are more easily induced after long exposure to weightlessness. Head movements can cause illusory spinning sensations for up to 7 days postflight. Postural and balance control does not fully recover for at least a month postflight
Communications Biophysics
Contains research objectives and summary of research.National Institutes of Health (Grant 5 PO1 GM14940-07)National Institutes of Health (Grant 1 RO1 NS11000-01)Clarence J. LeBel FundNational Institutes of Health (Grant 1 RO1 NS10737-01)National Aeronautics and Space Administration (Grant NGL 22-009-304)Boston City Hospital Purchase Order 1176-21335B-D Electrodyne Division, Becton Dickinson and Company (Grant)Chicago Musical Instrument Company (Grant
Recommended from our members
Human Perception of Whole-Body Roll Tilt Orientation in a Hypo-Gravity Analog: Underestimation and Adaptation
Overestimation of roll tilt in hypergravity (“G-excess” illusion) has been demonstrated, but corresponding sustained hypogravic conditions are impossible to create in ground laboratories. In this article we describe the first systematic experimental evidence that in a hypogravity analog, humans underestimate roll tilt. We studied perception of self-roll tilt in nine subjects, who were supine while spun on a centrifuge to create a hypogravity analog. By varying the centrifuge rotation rate, we modulated the centripetal acceleration (GC) at the subject’s head location (0.5 or 1 GC) along the body axis. We measured orientation perception using a subjective visual vertical task in which subjects aligned an illuminated bar with their perceived centripetal acceleration direction during tilts (±11.5–28.5°). As hypothesized, based on the reduced utricular otolith shearing, subjects initially underestimated roll tilts in the 0.5 GC condition compared with the 1 GC condition (mean perceptual gain change = −0.27, P = 0.01). When visual feedback was given after each trial in 0.5 GC, subjects’ perceptual gain increased in approximately exponential fashion over time (time constant = 16 tilts or 13 min), and after 45 min, the perceptual gain was not significantly different from the 1 GC baseline (mean gain difference between 1 GC initial and 0.5 GC final = 0.16, P = 0.3). Thus humans modified their interpretation of sensory cues to more correctly report orientation during this hypogravity analog. Quantifying the acute orientation perceptual learning in such an altered gravity environment may have implications for human space exploration on the moon or Mars. NEW & NOTEWORTHY Humans systematically overestimate roll tilt in hypergravity. However, human perception of orientation in hypogravity has not been quantified across a range of tilt angles. Using a centrifuge to create a hypogravity centripetal acceleration environment, we found initial underestimation of roll tilt. Providing static visual feedback, perceptual learning reduced underestimation during the hypogravity analog. These altered gravity orientation perceptual errors and adaptation may have implications for astronauts.</p
Communications Biophysics
Contains research objectives and reports on six research projects split into three sections.National Institutes of Health (Grant 5 P01 NS13126-07)National Institutes of Health (Training Grant 5 T32 NS07047-05)National Institutes of Health (Training Grant 2 T32 NS07047-06)National Science Foundation (Grant BNS 77-16861)National Institutes of Health (Grant 5 R01 NS1284606)National Institutes of Health (Grant 5 T32 NS07099)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 R01 NS14092-04)Gallaudet College SubcontractKarmazin Foundation through the Council for the Arts at M.I.T.National Institutes of Health (Grant 1 R01 NS1691701A1)National Institutes of Health (Grant 5 R01 NS11080-06)National Institutes of Health (Grant GM-21189
Communications Biophysics
Contains research objectives and summary of research on five research projects, with ten sub-topics.National Institutes of Health (Grant 1 RO1 NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-03)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard-M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare (Grant 23-P-55854)National Institutes of Health (Grant 1 RO1 NS11680-01)National Institutes of Health (Grant 5 ROI NS11080-02)M.I.T. Health Sciences FundNational Aeronautics and Space Administration (Grant NSG-2032)National Institutes of Health (Grant 5 TO1 GM01555-09)Massachusetts General Hospital Purchase Order F63853Boston City Hospital Purchase Order 4338-7543
Augmented Reality for Railroad Operations Using Head-up Displays
693JJ6-18-C-000010A team from MIT\u2019s Human Systems Laboratory designed the locomotive HUD as a wide field of view augmented reality head-up display (AR-HUD). The technical feasibility of an AR-HUD was assessed through literature review and hardware tests. To study human factors issues, an AR-HUD prototype was designed, reviewed by experienced engineers, then implemented in the FRA Cab Technology Integration Laboratory simulator. The engineers\u2019 behavior was not significantly altered and using the AR-HUD reduced the time spent looking away from the forward view. Subjective feedback from the engineers confirmed the acceptability and potential benefit of using HUDs
Communications Biophysics
Contains research objectives, summary of research and reports on three research projects.National Institutes of Health (Grant 5 PO1 GM14940-06)National Institutes of Health (Grant 2 TOl GM01555-06)National Institutes of Health (Grant 1 ROl NS10737-01)National Aeronautics and Space Administration (Grant NGL 22-009-304)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300B-D Electrodyne Division, Becton Dickinson and Company (Grant)Boston City Hospital Purchase Order 1176-21-33
Communications Biophysics
Contains reports on ten research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Training Grant 5 T32 NS0704)National Science Foundation (Grant BNS80-06369)National Institutes of Health (Grant 5 R01 NS11153)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 P01 NS14092)Karmazin Foundation through the Council for the Arts at MITNational Institutes of Health (Fellowship 5 F32 NS06386)National Science Foundation (Fellowship SP179-14913)National Institutes of Health (Grant 5 RO1 NS11080
- …