189 research outputs found

    Differential constraints compatible with linearized equations

    Full text link
    Differential constraints compatible with the linearized equations of partial differential equations are examined. Recursion operators are obtained by integrating the differential constraints

    Classical and nonclassical symmetries of a generalized Boussinesq equation

    Full text link
    We apply the Lie-group formalism and the nonclassical method due to Bluman and Cole to deduce symmetries of the generalized Boussinesq equation, which has the classical Boussinesq equation as an special case. We study the class of functions f(u)f(u) for which this equation admit either the classical or the nonclassical method. The reductions obtained are derived. Some new exact solutions can be derived

    Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries

    Get PDF
    Lie group theory states that knowledge of a mm-parameters solvable group of symmetries of a system of ordinary differential equations allows to reduce by mm the number of equations. We apply this principle by finding some \emph{affine derivations} that induces \emph{expanded} Lie point symmetries of considered system. By rewriting original problem in an invariant coordinates set for these symmetries, we \emph{reduce} the number of involved parameters. We present an algorithm based on this standpoint whose arithmetic complexity is \emph{quasi-polynomial} in input's size.Comment: Before analysing an algebraic system (differential or not), one can generally reduce the number of parameters defining the system behavior by studying the system's Lie symmetrie

    Supersymmetric Non-local Gas Equation

    Full text link
    In this paper we study systematically the question of supersymmetrization of the non-local gas equation. We obtain both the N=1 and the N=2 supersymmetric generalizations of the system which are integrable. We show that both the systems are bi-Hamiltonian. While the N=1 supersymmetrization allows the hierarchy of equations to be extended to negative orders (local equations), we argue that this is not the case for the N=2 supersymmetrization. In the bosonic limit, however, the N=2 system of equations lead to a new coupled integrable system of equations.Comment: RevTex, 7page

    Lie symmetries of Einstein's vacuum equations in N dimensions

    Get PDF
    We investigate Lie symmetries of Einstein's vacuum equations in N dimensions, with a cosmological term. For this purpose, we first write down the second prolongation of the symmetry generating vector fields, and compute its action on Einstein's equations. Instead of setting to zero the coefficients of all independent partial derivatives (which involves a very complicated substitution of Einstein's equations), we set to zero the coefficients of derivatives that do not appear in Einstein's equations. This considerably constrains the coefficients of symmetry generating vector fields. Using the Lie algebra property of generators of symmetries and the fact that general coordinate transformations are symmetries of Einstein's equations, we are then able to obtain all the Lie symmetries. The method we have used can likely be applied to other types of equations

    Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation

    Full text link
    We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively

    Differential Invariants of Conformal and Projective Surfaces

    Full text link
    We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames

    On integrability of a (2+1)-dimensional perturbed Kdv equation

    Full text link
    A (2+1)-dimensional perturbed KdV equation, recently introduced by W.X. Ma and B. Fuchssteiner, is proven to pass the Painlev\'e test for integrability well, and its 4×\times 4 Lax pair with two spectral parameters is found. The results show that the Painlev\'e classification of coupled KdV equations by A. Karasu should be revised

    Nonlinear Dirac and diffusion equations in 1 + 1 dimensions from stochastic considerations

    Full text link
    We generalize the method of obtaining the fundamental linear partial differential equations such as the diffusion and Schrodinger equation, Dirac and telegrapher's equation from a simple stochastic consideration to arrive at certain nonlinear form of these equations. The group classification through one parameter group of transformation for two of these equations is also carried out.Comment: 18 pages, Latex file, some equations corrected and group analysis in one more case adde

    Lie group classifications and exact solutions for time-fractional Burgers equation

    Full text link
    Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests a fractional Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.Comment: 9 pp, accepte
    corecore