45 research outputs found

    Combustion chemistry of COS and occurrence of intersystem crossing

    Get PDF
    This contribution combines results of experiments with kinetic modelling to probe the unusual behaviour of carbonyl sulfide (COS), a sulfur species that frequently arises in fuel systems. The experiments identified CO and SO2 as the primary oxidation products, with no formation of CO2. The low ignition temperature (<600 K) of COS observed in prior experiments conflicts with the high activation barrier for the reaction COS + O2 → CO2 + SO of 211.3 kJ mol−1 on the traditional triplet reaction surface. We proposed that, this kinetic barrier prompts the reaction to transfer onto the singlet surface through intersystem crossing that allows the process to surmount lower-energy hurdles. By considering the oxidation of COS as a single step reaction, we fitted the Arrhenius parameter for the reaction COS + O2 → CO + SO2 directly from our experimental measurements. The fitted activation energy of 70.1 kJ∙mol−1 agrees with that of 85.4 ± 20.0 kJ∙mol−1 as calculated in literature at the Hartree-Fock level of theory, indicating the appearance of the intersystem crossing process in the oxidation of COS. The reaction mechanism based on this comportment leads to excellent agreement between the kinetic model and the experimentally measured quantities, such as the onset temperature and the conversion profiles of detected species. The proposed kinetic model for the oxidation of COS provides a tool to design both the SOx mitigation processes and industrial systems for safe handling of sulfur impurities in fossil fuels

    Products of incomplete combustion from biomass reburning

    Get PDF
    Fuel reburning usually serves in mitigating NOx formation in stationary combustion sources. However, the use of biomass as reburning fuel could facilitate the production of relatively more nitrogen-containing aromatic products of incomplete combustion. This study investigates the heterogeneous reaction between biomass and mixtures of NO/O2 gases, employing isothermal high-temperature experiments in a vertically-entrained reactor, and in situ diffuse reflective infrared Fourier transform spectroscopy (DRIFTS) under a non-isothermal heating condition ranging from ambient temperature to 700 °C. The method enables sensitive evaluation of the surface species ensuing during the thermal reaction. Results from this study elucidate the formation of nitrated structures as active intermediate species of the heterogeneous reaction. The nitrogenated signatures persist on the surface of the residual ash, suggesting the production of N-aromatics such as nitro-PAH. Considering the severe toxicity and bioaccumulative properties of these by-products, further research should focus on the relative contribution of various reburning fuels, while favouring sustainable fuels such as non-charring plastics

    Atmospheric emission of NOx from mining explosives: A critical review

    Get PDF
    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)−1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y−1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems, identifying possible future developments and their impacts on the environment with emphasis on local and workplace loads

    Probing the reactivity of singlet oxygen with cyclic monoterpenes

    Get PDF
    Monoterpenes represent a class of hydrocarbons consisting of two isoprene units. Like many other terpenes, monoterpenes emerge mainly from vegetation, indicating their significance in both atmospheric chemistry and pharmaceutical and food industries. The atmospheric recycling of monoterpenes constitutes a major source of secondary organic aerosols. Therefore, this contribution focuses on the mechanism and kinetics of atmospheric oxidation of five dominant monoterpenes (i.e., limonene, α-pinene, β-pinene, sabinene, and camphene) by singlet oxygen. The reactions are initiated via the ene-type addition of singlet oxygen (O21Δg) to the electron-rich double bond, progressing favorably through the concerted reaction mechanisms. The physical analyses of the frontier molecular orbitals agree well with the thermodynamic properties of the selected reagents, and the computed reaction rate parameters. The reactivity of monoterpenes with O21Δg follows the order of α-pinene > sabinene > limonene > β-pinene > camphene, i.e., α-pinene and camphene retain the highest and lowest reactivity toward singlet oxygen, with rate expressions of k(T) (M–1 s–1) = 1.13 × 108 exp(−48(kJ)/RT(K)) and 6.93 × 108 exp(−139(kJ)/RT(K)), respectively. The effect of solvent on the primary reaction pathways triggers a slight reduction in energy, ranging between 12 and 34 kJ/mol

    DFT + U and ab initio atomistic thermodynamics approache for mixed transitional metallic oxides: A case study of CoCu 2 O 3 surface terminations

    Get PDF
    This study develops a systematic density functional theory alongside on-site Coulomb interaction correction (DFT + U) and ab initio atomistic thermodynamics approachs for ternary (or mixed transitional metal oxides), expressed in three reservoirs. As a case study, among notable multiple metal oxides, synthesized CoCu2O3 exhibits favourable properties towards applications in solar, thermal and catalytic processes. This progressive contribution applies DFT + U and atomistic thermodynamic approaches to examine the structure and relative stability of CoCu2O3 surfaces. Twenty-five surfaces along the [001], [010], [100], [011], [101], [110] and [111] low-Miller-indices, with varying surface-termination configurations were selected in this study. The results portray satisfactory geometrical parameters for bulk CoCu2O3 and a band gap of 1.25 e V. Furthermore, we clarified the stoichiometrically balanced inverted (010)CoCuO, and the non-stoichiometric (001)CuOCu, (001)CoOCo, (110)OCoO and (110)CoOCu surface terminations as the most stable configurations, out of which, the (001)CuOCu shows the optimum stability in ambient conditions. The systematic approach applied in this study should prove instrumental for the analysis of other 3-element multicomponent systems. To the best of our knowledge, the present study is the first to report DFT + U analysis to any 3-multicompnent systems with two of them requires inclusion of U treatment (i.e., f- and d- orbitals) in the electronic structure calculations

    Phenol dissociation on pristine and defective graphene

    Get PDF
    Phenol (C6H5O‒H) dissociation on both pristine and defective graphene sheets in terms of associated enthalpic requirements of the reaction channels was investigated. Here, we considered three common types of defective graphene, namely, Stone-Wales, monovacancy and divacancy configurations. Theoretical results demonstrate that, graphene with monovacancy creates C atoms with dangling bond (unpaired valence electron), which remains particularly useful for spontaneous dissociation of phenol into phenoxy (C6H5O) and hydrogen (H) atom. The reactions studied herein appear barrierless with reaction exothermicity as high as 2.2 eV. Our study offers fundamental insights into another potential application of defective graphene sheets

    Kinetics of Photo-Oxidation of oxazole and its substituents by singlet oxygen

    Get PDF
    Oxazole has critical roles not only in heterocycle (bio)chemistry research, but also as the backbone of many active natural and medicinal species. These diverse and specialised functions can be attributed to the unique physicochemical properties of oxazole. This contribution investigates the reaction of oxazole and its derivatives with singlet oxygen, employing density functional theory DFT-B3LYP calculations. The absence of allylic hydrogen in oxazole eliminates the ene-mode addition of singlet oxygen to the aromatic ring. Therefore, the primary reaction pathway constitutes the [4 + 2]-cycloaddition of singlet oxygen to oxazole ring, favouring an energetically accessible corridor of 57 kJ/mol to produce imino-anhydride which is postulated to convert to triamide end-product in subsequent steps. The pseudo-first-order reaction rate for substituted oxazole (e.g., 4-methyl-2,5-diphenyloxazole, 1.14 × 106 M−1 s−1) appears slightly higher than that of unsubstituted oxazole (0.94 × 106 M−1 s−1) considering the same initial concentration of the species at 300 K, due to the electronic effect of the functional groups. The global reactivity descriptors have justified the relative influence of the functional groups along with their respective physiochemical properties

    Burning properties of redox crystals of ammonium nitrate and saccharides

    Get PDF
    Ammonium nitrate (AN, NH4NO3) constitutes the key ingredient of monofuels and civilian-grade explosives, attracting scientific interests aimed at improving their operational and safety performance. This study investigates the combustion properties of redox crystals comprising ammonium nitrate and simple saccharides, with the infrared spectroscopy, X-ray diffraction and molecular modelling. Furthermore, the thermogravimetric measurements afford the isoconversional analysis that yields the overall activation energies of the decomposition process. In addition, the synthesised samples are subjected to elemental and sorption analyses. The results outline (i) the molecular inclusion of the solid fuels within the lattice clusters of AN, (ii) a comparable hygroscopicity behaviour, i.e., a minor increase in affinity towards the absorption of moisture, and (iii) an energetically improved decomposition (and regression) rate, relatively to pristine AN. These features manifest themselves in lower activation energies of redox crystals that enhance the deflagrating properties of these materials for possible application in aviation propellants, and minimise the environmental footprint, especially the emission of nitrogen oxide to the atmosphere, which arises because of inhomogeneities in AN-fuel mixtures commonly used in civilian explosives

    Interfacial and bulk properties of concentrated solutions of ammonium nitrate

    Get PDF
    We conducted molecular dynamics (MD) simulations to calculate the density and surface tension of concentrated ammonium nitrate (AN) solutions up to the solubility limit of ammonium nitrate in water, by combining the SPC/E, SPCE/F and TIP4P/2005 water models with OPLS model for ammonium and nitrate ions. This is the first time that the properties of concentrated solutions of nitrates, especially AN, have been studied by molecular dynamics. We effectively account for the polarisation effects by the electronic continuum correction (ECC), practically realised via rescaling of the ionic charges. We found that, the full-charge force field MD simulations overestimate the experimental results, as the ions experience repulsion from the interface and prefer to remain in the subsurface layer and the bulk solution. In contrast, reducing the ionic charges results in the behaviour that fits well with the experimental data. The nitrate anions display a greater propensity for the interface than the ammonium cations. We accurately predict both the density and the rise in the surface tension of concentrated solutions of AN, recommending TIP4P/2005 for water and the scaled-charge OPLS model (OPLS/ECC) for the ions in the solutions. We observe that, the adsorption of anions to the interface accompanies their depletion in the subsurface layer, which is preferentially occupied by cations, resulting in the formation of the electric double layer. We demonstrate the ion deficiency for up to 3 Ã… below the surface and establish the requirement to include the polarisability effects in the OPLS model for AN. While these results confirmed the findings of the previous studies for dilute solutions, they are new in the solubility limit. Concentrated solutions exhibit a strong effect of the abundance of solute on the coordination numbers of ions and on the degree of ion pairing. Surprisingly, ion pairing decreases significantly at the interface compared with the bulk. The present study identifies OPLS/ECC, along with TIP4P/2005, to yield accurate predictions of physical properties of concentrated AN, with precision required for industrial applications, such as a formulation of emulsion and fuel-oil explosives that now predominate the civilian use of AN. An application of this model will allow one to predict the surface properties of supersaturated solutions of AN which fall outside the capability of the present laboratory experiments but are important industrially

    Interfacial and bulk properties of concentrated solutions of ammonium nitrate

    Get PDF
    We conducted molecular dynamics (MD) simulations to calculate the density and surface tension of concentrated ammonium nitrate (AN) solutions up to the solubility limit of ammonium nitrate in water, by combining the SPC/E, SPCE/F and TIP4P/2005 water models with OPLS model for ammonium and nitrate ions. This is the first time that the properties of concentrated solutions of nitrates, especially AN, have been studied by molecular dynamics. We effectively account for the polarisation effects by the electronic continuum correction (ECC), practically realised via rescaling of the ionic charges. We found that, the full-charge force field MD simulations overestimate the experimental results, as the ions experience repulsion from the interface and prefer to remain in the subsurface layer and the bulk solution. In contrast, reducing the ionic charges results in the behaviour that fits well with the experimental data. The nitrate anions display a greater propensity for the interface than the ammonium cations. We accurately predict both the density and the rise in the surface tension of concentrated solutions of AN, recommending TIP4P/2005 for water and the scaled-charge OPLS model (OPLS/ECC) for the ions in the solutions. We observe that, the adsorption of anions to the interface accompanies their depletion in the subsurface layer, which is preferentially occupied by cations, resulting in the formation of the electric double layer. We demonstrate the ion deficiency for up to 3 Ã… below the surface and establish the requirement to include the polarisability effects in the OPLS model for AN. While these results confirmed the findings of the previous studies for dilute solutions, they are new in the solubility limit. Concentrated solutions exhibit a strong effect of the abundance of solute on the coordination numbers of ions and on the degree of ion pairing. Surprisingly, ion pairing decreases significantly at the interface compared with the bulk. The present study identifies OPLS/ECC, along with TIP4P/2005, to yield accurate predictions of physical properties of concentrated AN, with precision required for industrial applications, such as a formulation of emulsion and fuel-oil explosives that now predominate the civilian use of AN. An application of this model will allow one to predict the surface properties of supersaturated solutions of AN which fall outside the capability of the present laboratory experiments but are important industrially
    corecore