12 research outputs found
Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway
Please read abstract in the article.Cape Peninsula University of Technology and National Research Foundation (South Africa).https://www.elsevier.com/locate/ejpharhj2023Paraclinical Science
L-arginine and lisinopril supplementation protects against sodium fluoride–induced nephrotoxicity and hypertension by suppressing mineralocorticoid receptor and angiotensin-converting enzyme 3 activity
DATA AVAILABILITY : Data will be made available on request.Sodium fluoride (NaF) is one of the neglected environmental toxicants that has continued to silently cause toxicity to both humans and animals. NaF is universally present in water, soil, and atmosphere. The persistent and alarming rate of increase in cardiovascular and renal diseases caused by chemicals such as NaF in mammalian tissues has led to the use of various drugs for the treatment of these diseases. The present study aimed at evaluating the renoprotective and antihypertensive effects of L-arginine against NaF-induced nephrotoxicity. Thirty male Wistar rats (150–180 g) were used in this study. The rats were randomly divided into five groups of six rats each as follows: Control, NaF (300 ppm), NaF + L-arginine (100 mg/kg), NaF + L-arginine (200 mg/kg), and NaF + lisinopril (10 mg/kg). Histopathological examination and immunohistochemistry of renal angiotensin-converting enzyme (ACE) and mineralocorticoid receptor (MCR) were performed. Markers of renal damage, oxidative stress, antioxidant defense system, and blood pressure parameters were determined. L-arginine and lisinopril significantly (P < 0.05) ameliorated the hypertensive effects of NaF. The systolic, diastolic, and mean arterial blood pressure of the treated groups were significantly (P < 0.05) reduced compared with the hypertensive group. This finding was concurrent with significantly increased serum bioavailability of nitric oxide in the hypertensive rats treated with L-arginine and lisinopril. Also, there was a significant reduction in the level of blood urea nitrogen and creatinine of hypertensive rats treated with L-arginine and lisinopril. There was a significant (P < 0.05) reduction in markers of oxidative stress such as malondialdehyde and protein carbonyl and concurrent increase in the levels of antioxidant enzymes in the kidney of hypertensive rats treated with L-arginine and lisinopril. The results of this study suggest that L-arginine and lisinopril normalized blood pressure, reduced oxidative stress, and the expression of renal ACE and mineralocorticoid receptor, and improved nitric oxide production. Thus, L-arginine holds promise as a potential therapy against hypertension and renal damage.http://link.springer.com/journal/11356hj2024Paraclinical SciencesSDG-03:Good heatlh and well-bein
The therapeutic potential of the novel angiotensin-converting enzyme 2 in the treatment of coronavirus disease-19
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019
(COVID-19). This virus has become a global pandemic with unprecedented mortality and morbidity along with attendant
financial and economic crises. Furthermore, COVID-19 can easily be transmitted regardless of religion, race, sex, or status.
Globally, high hospitalization rates of COVID-19 patients have been reported, and billions of dollars have been spent to
contain the pandemic. Angiotensin-converting enzyme (ACE) 2 is a receptor of SARS-CoV-2, which has a significant
role in the entry of the virus into the host cell. ACE2 is highly expressed in the type II alveolar cells of the lungs, upper
esophagus, stratified epithelial cells, and other tissues in the body. The diminished expressions of ACE2 have been associated
with hypertension, arteriosclerosis, heart failure, chronic kidney disease, and immune system dysregulation. Overall, the
potential drug candidates that could serve as ACE2 activators or enhance the expression of ACE2 in a disease state, such as
COVID-19, hold considerable promise in mitigating the COVID-19 pandemic. This study reviews the therapeutic potential
and pharmacological benefits of the novel ACE2 in the management of COVID-19 using search engines, such as Google,
Scopus, PubMed, and PubMed Central.http://www.veterinaryworld.orgdm2022Paraclinical Science
Clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) agonist, and Its molecular mechanisms of action against sodium fluoride–induced toxicity
AVAILABILITY OF DATA AND MATERIALS : Data will be made available based on request from the corresponding author.Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and nephrotoxicity with clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. Administration of NaF induced hypertension, and was accompanied with exaggerated oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved antioxidant status, lowered high blood pressure through the inhibition of angiotensin-converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in mitigating toxicity associated with sodium fluoride.Cape Peninsula University of Technology and National Research Foundation (South Africa).https://link.springer.com/journal/12011hj2023Paraclinical Science
Sodium arsenite-induced cardiovascular and renal dysfunction in rat via oxidative stress and protein kinase B (Akt/PKB) signaling pathway
Objectives: Arsenic is a ubiquitous element that is widely distributed in the environment to which man and animals are exposed. Cardiovascular disease is one of the aftermaths of chronic arsenic exposure-related morbidity and mortality. This study sought to investigate the possibility of reversal from arsenic-induced cardio-renal toxicity following exposure and subsequent withdrawal. The study also seeks to understand the mechanism of action of this reversal. Methods: Rats were orally exposed to sodium arsenite at 10, 20 and 40 mg/kg daily for 4 weeks followed by 4 weeks of withdrawal. Results: Exposure to arsenic caused a significant increase in malondialdehyde, H2O2 generation but decrease total thiol and reduced glutathione levels in both cardiac and renal tissues. Furthermore, increases in superoxide dismutase, glutathione-S-transferase and catalase with significant increases in glutathione peroxidase activities were observed in the cardiac tissues. On the contrary, a significant reduction in the renal antioxidant enzyme activity was recorded following exposure. Also, antioxidant defense system did not return to apparent values after arsenic withdrawal. Immunohistochemistry revealed a reduction in the expression of the pro-survival protein–protein kinase B (Akt/PKB) following exposure to arsenic and this was not reversed by withdrawal Discussion: Exposure to arsenic caused cardio-renal toxicity via induction of oxidative stress and down-regulation of Akt/PKB expressions
Preconditioning with Azadirachta indica ameliorates cardiorenal dysfunction through reduction in oxidative stress and extracellular signal regulated protein kinase signalling
Background: Azadirachta indica is widely distributed in Africa, Asia and other tropical parts of the world. A. indica (AI) is traditionally used for the treatment of several conditions including cancer, hypertension, heart diseases and skin disorders. Intestinal ischaemia-reperfusion is a common pathway for many diseases and may lead to multiple organ dysfunction syndrome and death.
Objective: In this study, we investigated the ameliorative effects of AI on intestinal ischaemia-reperfusion injury-induced cardiorenal dysfunction.
Materials and methods: Sixty rats were divided into 6 groups; each containing 10. Corn oil was orally administered to group A (control) rats for 7 days without intestinal ischaemia-reperfusion injury. Group B underwent intestinal ischaemia-reperfusion injury (IIRI) without any pre-treatment. Groups C, D, E and F were pre-treated orally for 7 days with 100 mg/kg AI (100 and (200 mg/kg) vitamin C (100 and 200 mg/kg) respectively and thereafter underwent IIRI on the 8th day.
Results: The cardiac and renal hydrogen peroxide increased significantly whereas serum xanthine oxidase and myeloperoxidase levels were significantly elevated (p < 0.05) in IIRI only when compared to the control. The cardiac and renal reduced glutathione, glutathione peroxidase, protein thiol, non-protein thiol and serum nitric oxide (NO) decreased (p < 0.05) significantly following IIRI. Immunohistochemical evaluation of cardiac and renal tissues showed reduced expressions of the extracellular signal regulated kinase (ERK1/2) in rats with IIRI only. However, pre-treatment with A. indica and vitamin C significantly reduced markers of oxidative stress and inflammation together with improvement in antioxidant status. Also, reduced serum NO level was normalised in rats pre-treated with A. indica and vitamin C with concomitant higher expressions of cardiac and renal ERK1/2.
Conclusions: Together, A. indica and vitamin C prevented IRI-induced cardiorenal dysfunction via reduction in oxidative stress, improvement in antioxidant defence system and increase in the ERK1/2 expressions. Therefore, A. indica can be a useful chemopreventive agent in the prevention and treatment of conditions associated with intestinal ischaemia-reperfusion injury
Clofibrate, a PPAR‐α agonist, abrogates sodium fluoride‐induced neuroinflammation, oxidative stress, and motor incoordination via modulation of GFAP/Iba‐1/anti‐calbindin signaling pathways
Please read abstract in the article.National Research Foundation; Cape Peninsula
University of Technology.http://wileyonlinelibrary.com/journal/toxhj2023Paraclinical Science
Novel antihypertensive action of rutin is mediated via inhibition of angiotensin converting enzyme/mineralocorticoid receptor/angiotensin 2 type 1 receptor (ATR1) signaling pathways in uninephrectomized hypertensive rats
Hypertension is the most common cardiovascular disease that affects approximately 26% of adult population, worldwide. Rutin is one of the important flavonoids that is consumed in the daily diet, and found in many food items, vegetables, and beverages. Uninephrectomy (UNX) of the left kidney was performed, followed by induction of hypertension. The rats were randomly divided into four groups of 10 rats: group 1—Sham-operated rats; group 2—UNX rats, group 3—UNX-L-NAME (40 mg/kg) plus rutin (100 mg/kg bwt), and groups 4—UNX-L-NAME plus lisinopril (10 mg/kg bwt), orally for 3 weeks. Results revealed significant heightening of arterial pressure and oxidative stress indices, while hypertensive rats treated with rutin had lower expressions of angiotensin converting enzyme (ACE) and mineralocorticoid receptor in uninephrectomized rats. Together, rutin as a novel antihypertensive flavonoid could provide an unimaginable benefits for the management of hypertension through inhibition of angiotensin converting enzyme and mineralocorticoid receptor.
PRACTICAL APPLICATIONS : Hypertension has been reported to be the most common cardiovascular disease, affecting approximately 26% of the adult population worldwide with predicted prevalence to increase by 60% by 2025. Recent advances in phytomedicine have shown flavonoids to be very helpful in the treatment of many diseases. Flavonoids have been used in the treatment and management of cardiovascular diseases, obesity and hypertension. The study revealed that rutin, a known flavonoid inhibited angiotensin converting enzyme (ACE), angiotensin 2 type 1 receptor (ATR1), and mineralocorticoid receptor (MCR), comparable to the classic ACE inhibitor, Lisinopril, indicating the novel antihypertensive property of rutin. Therefore, flavonoids such as rutin found in fruits and vegetables could, therefore, serve as an antihypertensive drug regimen. Combining all, functional foods rich in flavonoids could be used as potential therapeutic candidates for managing uninephrectomized hypertensive patients.Cape Peninsula University of Technology and National Research Foundation (South Africa)http://www.wileyonlinelibrary.com/journal/jfbc2021-10-21hj2021Paraclinical Science
The therapeutic potential of the novel angiotensin-converting enzyme 2 in the treatment of coronavirus disease-19
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). This virus has become a global pandemic with unprecedented mortality and morbidity along with attendant financial and economic crises. Furthermore, COVID-19 can easily be transmitted regardless of religion, race, sex, or status. Globally, high hospitalization rates of COVID-19 patients have been reported, and billions of dollars have been spent to contain the pandemic. Angiotensin-converting enzyme (ACE) 2 is a receptor of SARS-CoV-2, which has a significant role in the entry of the virus into the host cell. ACE2 is highly expressed in the type II alveolar cells of the lungs, upper esophagus, stratified epithelial cells, and other tissues in the body. The diminished expressions of ACE2 have been associated with hypertension, arteriosclerosis, heart failure, chronic kidney disease, and immune system dysregulation. Overall, the potential drug candidates that could serve as ACE2 activators or enhance the expression of ACE2 in a disease state, such as COVID-19, hold considerable promise in mitigating the COVID-19 pandemic. This study reviews the therapeutic potential and pharmacological benefits of the novel ACE2 in the management of COVID-19 using search engines, such as Google, Scopus, PubMed, and PubMed Central