3 research outputs found

    Development and Process Optimization of a Ready-to-Eat Snack from Rice-Cowpea Composite by a Twin Extruder

    Get PDF
    A central composite rotatable design with four independent variables viz. blend ratio (broken rice flour and cowpea flour): 90:10–70:30, moisture content (10–18% wet basis), barrel temperature (110–150 ◦C), and screw speed (280–360 rpm) were varied in the development of ready-to-eat snacks using a twin extruder for a broken rice–cowpea product. The effects of the independent variables on specific mechanical energy, water absorption index, water solubility index, total color, hardness, bulk density, expansion ratio, and overall acceptability of the extruded snack were investigated using regression analysis. The results showed that the physical qualities of the ready-to-eat snacks were significantly affected by the extrusion parameters (i.e., blend ratio, barrel temperature, moisture content, and screw speed). From the findings, it was observed that screw speed and moisture contents affected hardness, while water absorption index was affected by all the extrusion parameters. However, the water solubility index and overall acceptance were majorly affected by the moisture content; extrudate produced with barrel ratio of 85:15, 12% moisture content, barrel temperature of 140 ◦C, and screw speed of 300 rpm was the most acceptable, at 6.73 on a 9 point hedonic scales. The blend ratio and barrel temperature influenced the expansion. Furthermore, the combination of cowpea and broken rice to produce nutritious ready-to-eat snacks has high acceptability and is a promising panacea for food security. Keywords: broken rice; cowpea; extrusion; food security and ready-to-eat snack

    Mathematical modelling of drying parameters of Moringa oleifera leaves in a cabinet dryer

    No full text
    This study focused on drying moringa leaves using a cabinet dryer. The impact of the 40, 50, and 60 °C drying air temperatures on the moisture content of the leaves at a constant air velocity with variation in weight (40, 80, and 120 g) was considered. Ten drying models were fitted to the drying data to describe the drying parameters of moringa leaves. The best model was chosen based on the highest coefficient of determination (R2 ), and the lowest sum of square error (SSE) and root mean square error (RMSE) values. The Henderson and Pabis model best described the drying characteristics of the moringa leaves having the highest R2 (0.9888) and lowest SSE (0.0401) and RMSE (0.0604). The effective moisture diffusivity increased with the temperatures ranging from 8.72 × 10–9 to 1.40 × 10–8 m2 ·s–1. The activation energy ranged from 90.4636, 40.4884, and 22.7466 KJ·mol–1 for 40, 80, and 120 g, respectivel

    Development and Process Optimization of a Ready-to-Eat Snack from Rice-Cowpea Composite by a Twin Extruder

    No full text
    A central composite rotatable design with four independent variables viz. blend ratio (broken rice flour and cowpea flour): 90:10–70:30, moisture content (10–18% wet basis), barrel temperature (110–150 ◦C), and screw speed (280–360 rpm) were varied in the development of ready-to-eat snacks using a twin extruder for a broken rice–cowpea product. The effects of the independent variables on specific mechanical energy, water absorption index, water solubility index, total color, hardness, bulk density, expansion ratio, and overall acceptability of the extruded snack were investigated using regression analysis. The results showed that the physical qualities of the ready-to-eat snacks were significantly affected by the extrusion parameters (i.e., blend ratio, barrel temperature, moisture content, and screw speed). From the findings, it was observed that screw speed and moisture contents affected hardness, while water absorption index was affected by all the extrusion parameters. However, the water solubility index and overall acceptance were majorly affected by the moisture content; extrudate produced with barrel ratio of 85:15, 12% moisture content, barrel temperature of 140 ◦C, and screw speed of 300 rpm was the most acceptable, at 6.73 on a 9 point hedonic scales. The blend ratio and barrel temperature influenced the expansion. Furthermore, the combination of cowpea and broken rice to produce nutritious ready-to-eat snacks has high acceptability and is a promising panacea for food securit
    corecore