8 research outputs found

    Augmented Reality Prototype for Visualising Large Sensors’ Datasets

    Get PDF
    This paper addressed the development of an augmented reality (AR) based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations which made data exploration and visualisation daunting tasks. Therefore a model to manage such data and enhance computational support needed for effective explorations are developed in this paper. A challenge of this approach is to reduce the data inefficiency. This paper presented a model for computing information gain for each data attributes and determine a lead attribute.The computed lead attribute is then used for the development of an AR-based scientific visualization interface which automatically identifies, localises and visualizes all necessary data relevant to a particularly selected region of interest (ROI) on the network. Necessary architectural system supports and the interface requirements for such visualizations are also presented

    The Possible Role of Microbial Proteases in Facilitating SARS-CoV-2 Brain Invasion

    No full text
    SARS-CoV-2 has been shown to display proclivity towards organs bearing angiotensin-converting enzyme (ACE2) expression cells. Of interest herein is the ability of the virus to exhibit neurotropism. However, there is limited information on how this virus invades the brain. With this contribution, we explore how, in the context of a microbial co-infection using a cryptococcal co-infection as a model, SARS-CoV-2 could reach the brain. We theorise that the secretion of proteases by disseminated fungal cells might also activate the S2 domain of the viral spike glycoprotein for membrane fusion with brain endothelial cells leading to endocytosis. Understanding this potential invasion mechanism could lead to better SARS-CoV-2 intervention measures, which may also be applicable in instances of co-infection, especially with protease-secreting pathogens

    The Repurposing of Acetylsalicylic Acid as a Photosensitiser to Inactivate the Growth of Cryptococcal Cells

    No full text
    Photodynamic treatment (PDT) is often successful when used against aerobic microbes, given their natural susceptibility to oxidative damage. To this end, the current study aimed to explore the photodynamic action of acetylsalicylic acid (ASA; aspirin, which is commonly used to treat non-infectious ailments), when administered to respiring cryptococcal cells. The treatment of cryptococcal cells, i.e., exposure to 0.5 or 1 mM of ASA in the presence of ultraviolet light (UVL) for 10 min, resulted in a significant (p < 0.05) reduction in the growth of tested cells when compared to non-treated (non-Rx) cells, i.e., no ASA and no UVL. The treated cells were also characterised by diseased mitochondria, which is crucial for the survival of respiring cells, as observed by a significant (p < 0.05) loss of mitochondrial membrane potential (ΔΨM) and significant (p < 0.05) accumulation of reactive oxygen species (ROS) when compared to non-Rx cells. Moreover, the photolytic products of acetylsalicylic acid altered the ultrastructural appearance of treated cells as well as limited the expression levels of the capsular-associated gene, CAP64, when compared to non-Rx cells. The results of the study highlight the potential use of ASA as a photosensitiser that is effective for controlling the growth of cryptococcal cells. Potentially, this treatment can also be used as an adjuvant, to complement and support the usage of current anti-microbial agents

    The Repurposing of the Antimalaria Drug, Primaquine, as a Photosensitizer to Inactivate Cryptococcal Cells

    No full text
    Cryptococcal cells can manifest skin infections in immunocompromised persons. While it may be easy to diagnose cryptococcal infection, treatment often fails due to the ineffectiveness of current antifungal agents. To this end, the present study explored the repurposing of primaquine (PQ), as a photosensitizer. PDT was carried out using a germicidal ultraviolet (UV) lamp, which has a radiation output of approximately 625 µW/cm2 at a distance of 20 cm. When compared to the non-treated cells, the metabolic activity of cryptococcal cells was significantly (p < 0.05) limited. The photolytic products of PQ were observed to alter the ultrastructure of treated cells. The latter was not incidental, as the same cells were also documented to lose their selective permeability. Importantly, PDT also improved the efficiency of macrophages to kill internalized cryptococcal cells (p ≤ 0.05) when compared to non-treated macrophages. Equally importantly, PDT was not detrimental to macrophages, as their metabolic activity was not significantly (p > 0.05) limited, even when exposed to 20× the MIC (determined for cryptococcal cells) and an exposure time that was 4× longer. Taken together, the results suggest PQ has the potential to control the growth of cryptococcal cells and limit their survival inside the macrophage

    Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis

    No full text
    The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly

    Cryptococcal Protease(s) and the Activation of SARS-CoV-2 Spike (S) Protein

    No full text
    In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection
    corecore