6 research outputs found
Short and random: Modelling the effects of (proto-)neural elongations
To understand how neurons and nervous systems first evolved, we need an
account of the origins of neural elongations: Why did neural elongations (axons
and dendrites) first originate, such that they could become the central
component of both neurons and nervous systems? Two contrasting conceptual
accounts provide different answers to this question. Braitenberg's vehicles
provide the iconic illustration of the dominant input-output (IO) view. Here
the basic role of neural elongations is to connect sensors to effectors, both
situated at different positions within the body. For this function, neural
elongations are thought of as comparatively long and specific connections,
which require an articulated body involving substantial developmental processes
to build. Internal coordination (IC) models stress a different function for
early nervous systems. Here the coordination of activity across extended parts
of a multicellular body is held central, in particular for the contractions of
(muscle) tissue. An IC perspective allows the hypothesis that the earliest
proto-neural elongations could have been functional even when they were
initially simple short and random connections, as long as they enhanced the
patterning of contractile activity across a multicellular surface. The present
computational study provides a proof of concept that such short and random
neural elongations can play this role. While an excitable epithelium can
generate basic forms of patterning for small body-configurations, adding
elongations allows such patterning to scale up to larger bodies. This result
supports a new, more gradual evolutionary route towards the origins of the very
first full neurons and nervous systems.Comment: 12 pages, 5 figures, Keywords: early nervous systems, neural
elongations, nervous system evolution, computational modelling, internal
coordinatio
Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution
Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia using chemical signaling are a potential candidate as a nervous system precursor.We developed a computational model and a measure for whole body coordination to investigate the coordinative properties of such excitable epithelia. Using this measure we show that excitable epithelia can spontaneously exhibit body-scale patterns of activation. Relevant factors determining the extent of patterning are the noise level for exocytosis, relative body dimensions, and body size. In smaller bodies whole-body coordination emerges from cellular excitability and bidirectional excitatory transmission alone.Our results show that basic internal coordination as proposed by the skin brain thesis could have arisen in this potential nervous system precursor, supporting that this configuration may have played a role as a proto-neural system and requires further investigation