13,676 research outputs found
Using shared online blogs to structure and support informal coach learning. Part 2: The participants’ view and implications for coach education
In part one of this paper, Stoszkowski and Collins (2015) showed that shared online blogs were a useful tool to structure and support the informal learning of a cohort of final year undergraduate sports coaching students. The aim of the present study was to offer insight into student coaches’ perceptions of their use and experiences of structured group blogging for reflection and learning. Twenty-three student coaches (5 females, 18 males), purposely sampled from the original study, took part in four semi-structured focus group interviews. Interview data were inductively analysed. Student coaches were generally very positive about their learning experiences and the pedagogical approach employed. This was especially apparent in terms of perceived increases in levels of reflection, knowledge acquisition and improvements in coaching practice; changes corroborated by the data presented in part one. A range of reasons emerged for these outcomes, alongside several potential limiters of engagement in shared group blogging as a learning endeavour. Whilst these findings support recent, and growing proposals to systematically incorporate Web 2.0 technologies such as blogs into coach education pedagogy, several key considerations for the process of using such tools are outlined. Finally, the implications for coach educators are discussed
The Impact of NLO-Corrections on the Determination of the $\bar{u},\bar{d} Content of Nucleons from Drell-Yan Production
The interpretation of Drell-Yan production in terms of the antiquark
densities depends on NLO corrections. Besides the NLO corrections to the
familiar annihilation , there is a
substantial contribution from the QCD Compton subprocesses and . The beam and target
dependence of the two classes of corrections is different. We discuss the
impact of this difference on the determination of the
asymmetry in the proton from the comparison of the and Drell-Yan
production.Comment: 4 pages, 1 eps-figure. To be published in Proceedings of DIS'9
Analytic Quantization of the QCD String
We perform an analytic semi-classical quantization of the straight QCD string
with one end fixed and a massless quark on the other, in the limits of orbital
and radial dominant motion. We compare our results to the exact numerical
semi-classical quantization. We observe that the numerical semi-classical
quantization agrees well with our exact numerical canonical quantization.Comment: RevTeX, 10 pages, 9 figure
Reduction of the QCD string to a time component vector potential
We demonstrate the equivalence of the relativistic flux tube model of mesons
to a simple potential model in the regime of large radial excitation. We make
no restriction on the quark masses; either quark may have a zero or finite
mass. Our primary result shows that for fixed angular momentum and large radial
excitation, the flux tube/QCD string meson with a short-range Coulomb
interaction is described by a spinless Salpeter equation with a time component
vector potential V(r) = ar - k/r.Comment: RevTeX4, 10 pages, 3 eps figure
Flux quantization and superfluid weight in doped antiferromagnets
Doped antiferromagnets, described by a t-t'-J model and a suitable 1/N
expansion, exhibit a metallic phase-modulated antiferromagnetic ground state
close to half-filling. Here we demonstrate that the energy of latter state is
an even periodic function of the external magnetic flux threading the square
lattice in an Aharonov-Bohm geometry. The period is equal to the flux quantum
entering the Peierls phase factor of the hopping
matrix elements. Thus flux quantization and a concomitant finite value of
superfluid weight D_s occur along with metallic antiferromagnetism. We argue
that in the context of the present effective model, whereby carriers are
treated as hard-core bosons, the charge q in the associated flux quantum might
be set equal to 2e. Finally, the superconducting transition temperature T_c is
related to D_s linearly, in accordance to the generic Kosterlitz-Thouless type
of transition in a two-dimensional system, signaling the coherence of the phase
fluctuations of the condensate. The calculated dependence of T_c on hole
concentration is qualitatively similar to that observed in the high-temperature
superconducting cuprates.Comment: 5 pages, 2 figures, to be published in J. Phys. Condens. Matte
Scanning tunneling microscopy and spectroscopy of sodium-chloride overlayers on the stepped Cu(311) surface: Experimental and theoretical study
The physical properties of ultrathin NaCl overlayers on the stepped Cu(311)
surface have been characterized using scanning tunneling microscopy (STM) and
spectroscopy, and density functional calculations. Simulations of STM images
and differential conductance spectrum were based on the Tersoff-Hamann
approximation for tunneling with corrections for the modified tunneling barrier
at larger voltages and calculated Kohn-Sham states. Characteristic features
observed in the STM images can be directly related to calculated electronic and
geometric properties of the overlayers. The measured apparent barrier heights
for the mono-, bi-, and trilayers of NaCl and the corresponding
adsorption-induced changes in the work function, as obtained from the distance
dependence of the tunneling current, are well reproduced by and understood from
the calculated results. The measurements revealed a large reduction of the
tunneling conductance in a wide voltage region, resembling a band gap. However,
the simulated spectrum showed that only the onset at positive sample voltages
may be viewed as a valence band edge, whereas the onset at negative voltages is
caused by the drastic effect of the electric field from the tip on the
tunneling barrier
Bethe--Salpeter equation in QCD
We extend to regular QCD the derivation of a confining
Bethe--Salpeter equation previously given for the simplest model of scalar QCD
in which quarks are treated as spinless particles. We start from the same
assumptions on the Wilson loop integral already adopted in the derivation of a
semirelativistic heavy quark potential. We show that, by standard
approximations, an effective meson squared mass operator can be obtained from
our BS kernel and that, from this, by expansion the
corresponding Wilson loop potential can be reobtained, spin--dependent and
velocity--dependent terms included. We also show that, on the contrary,
neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte
Semi-leptonic B decays into higher charmed resonances
We apply HQET to semi-leptonic meson decays into a variety of excited
charm states. Using three realistic meson models with fermionic light degrees
of freedom, we examine the extent that the sum of exclusive single charmed
states account for the inclusive semi-leptonic decay rate. The consistency
of form factors with the Bjorken and Voloshin sum rules is also investigated.Comment: Latex, 27 pages. A few references and errors corrected, to appear in
Phys. Rev.
- …