752 research outputs found

    Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling

    Full text link
    Boson sampling is a simple model for non-universal linear optics quantum computing using far fewer physical resources than universal schemes. An input state comprising vacuum and single photon states is fed through a Haar-random linear optics network and sampled at the output using coincidence photodetection. This problem is strongly believed to be classically hard to simulate. We show that an analogous procedure implements the same problem, using photon-added or -subtracted squeezed vacuum states (with arbitrary squeezing), where sampling at the output is performed via parity measurements. The equivalence is exact and independent of the squeezing parameter, and hence provides an entire class of new quantum states of light in the same complexity class as boson sampling.Comment: 5 pages, 2 figure

    Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states---The quantum-classical divide and computational-complexity transitions in linear optics

    Full text link
    Boson sampling is a specific quantum computation, which is likely hard to implement efficiently on a classical computer. The task is to sample the output photon number distribution of a linear optical interferometric network, which is fed with single-photon Fock state inputs. A question that has been asked is if the sampling problems associated with any other input quantum states of light (other than the Fock states) to a linear optical network and suitable output detection strategies are also of similar computational complexity as boson sampling. We consider the states that differ from the Fock states by a displacement operation, namely the displaced Fock states and the photon-added coherent states. It is easy to show that the sampling problem associated with displaced single-photon Fock states and a displaced photon number detection scheme is in the same complexity class as boson sampling for all values of displacement. On the other hand, we show that the sampling problem associated with single-photon-added coherent states and the same displaced photon number detection scheme demonstrates a computational complexity transition. It transitions from being just as hard as boson sampling when the input coherent amplitudes are sufficiently small, to a classically simulatable problem in the limit of large coherent amplitudes.Comment: 7 pages, 3 figures; published versio

    Inefficiency of classically simulating linear optical quantum computing with Fock-state inputs

    Get PDF
    Aaronson and Arkhipov recently used computational complexity theory to argue that classical computers very likely cannot efficiently simulate linear, multimode, quantum-optical interferometers with arbitrary Fock-state inputs [Aaronson and Arkhipov, Theory Comput. 9, 143 (2013)]. Here we present an elementary argument that utilizes only techniques from quantum optics. We explicitly construct the Hilbert space for such an interferometer and show that its dimension scales exponentially with all the physical resources. We also show in a simple example just how the Schr\"odinger and Heisenberg pictures of quantum theory, while mathematically equivalent, are not in general computationally equivalent. Finally, we conclude our argument by comparing the symmetry requirements of multiparticle bosonic to fermionic interferometers and, using simple physical reasoning, connect the nonsimulatability of the bosonic device to the complexity of computing the permanent of a large matrix.Comment: 7 pages, 1 figure Published in PRA Phys. Rev. A 89, 022328 (2014
    • …
    corecore