14 research outputs found

    A Method to screen U.S. environmental biomonitoring data for race/ethnicity and income-related disparity

    Get PDF
    BACKGROUND: Environmental biomonitoring data provide one way to examine race/ethnicity and income-related exposure disparity and identify potential environmental justice concerns. METHODS: We screened U.S. National Health and Nutrition Examination Survey (NHANES) 2001–2008 biomonitoring data for 228 chemicals for race/ethnicity and income-related disparity. We defined six subgroups by race/ethnicity—Mexican American, non-Hispanic black, non-Hispanic white—and income—Low Income: poverty income ratio (PIR) <2, High Income: PIR ≥ 2. We assessed disparity by comparing the central tendency (geometric mean [GM]) of the biomonitoring concentrations of each subgroup to that of the reference subgroup (non-Hispanic white/High Income), adjusting for multiple comparisons using the Holm-Bonferroni procedure. RESULTS: There were sufficient data to estimate at least one geometric mean ratio (GMR) for 108 chemicals; 37 had at least one GMR statistically different from one. There was evidence of potential environmental justice concern (GMR significantly >1) for 12 chemicals: cotinine; antimony; lead; thallium; 2,4- and 2,5-dichlorophenol; p,p’-dichlorodiphenyldichloroethylene; methyl and propyl paraben; and mono-ethyl, mono-isobutyl, and mono-n-butyl phthalate. There was also evidence of GMR significantly <1 for 25 chemicals (of which 17 were polychlorinated biphenyls). CONCLUSIONS: Although many of our results were consistent with the U.S. literature, findings relevant to environmental justice were novel for dichlorophenols and some metals

    Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection

    No full text
    BackgroundData on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited. MethodsFrom a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August, 2020 to March, 2021 for SARS-CoV-2 infection by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum- neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models. ResultsAmong 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose- 2. ConclusionsA single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS- CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product. Main Point SummaryOne dose of mRNA COVID-19 vaccine after previous SARS-CoV-2 infection produced the highest neutralizing antibody titers; among those without history of infection, two doses of mRNA vaccine produced the most robust response
    corecore