3,358 research outputs found
Correlations in Nuclear Masses
It was recently suggested that the error with respect to experimental data in
nuclear mass calculations is due to the presence of chaotic motion. The theory
was tested by analyzing the typical error size. A more sensitive quantity, the
correlations of the mass error between neighboring nuclei, is studied here. The
results provide further support to this physical interpretation.Comment: 4 pages, 2 figure
Mesoscopic Fluctuations of the Pairing Gap
A description of mesoscopic fluctuations of the pairing gap in finite-sized
quantum systems based on periodic orbit theory is presented. The size of the
fluctuations are found to depend on quite general properties. We distinguish
between systems where corresponding classical motion is regular or chaotic, and
describe in detail fluctuations of the BCS gap as a function of the size of the
system. The theory is applied to different mesoscopic systems: atomic nuclei,
metallic grains, and ultracold fermionic gases. We also present a detailed
description of pairing gap variation with particle number for nuclei based on a
deformed cavity potential.Comment: Conference Proceeding of Mesoscopic Workshop WNMP0
A search for radio emission from exoplanets around evolved stars
The majority of searches for radio emission from exoplanets have to date
focused on short period planets, i.e., the so-called hot Jupiter type planets.
However, these planets are likely to be tidally locked to their host stars and
may not generate sufficiently strong magnetic fields to emit electron cyclotron
maser emission at the low frequencies used in observations (typically >150
MHz). In comparison, the large mass-loss rates of evolved stars could enable
exoplanets at larger orbital distances to emit detectable radio emission. Here,
we first show that the large ionized mass-loss rates of certain evolved stars
relative to the solar value could make them detectable with the Low Frequency
Array (LOFAR) at 150 MHz ( = 2 m), provided they have surface magnetic
field strengths >50 G. We then report radio observations of three long period
(>1 au) planets that orbit the evolved stars Gem, Dra, and
UMi using LOFAR at 150 MHz. We do not detect radio emission from any
system but place tight 3 upper limits of 0.98, 0.87, and 0.57 mJy on
the flux density at 150 MHz for Gem, Dra, and UMi,
respectively. Despite our non-detections these stringent upper limits highlight
the potential of LOFAR as a tool to search for exoplanetary radio emission at
meter wavelengths.Comment: 9 pages, 3 figure
Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae
S-type AGB stars have a C/O ratio which suggests that they are transition
objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such,
their circumstellar compositions of gas and dust are thought to be sensitive to
their precise C/O ratio, and it is therefore of particular interest to examine
their circumstellar properties.
We present new Herschel HIFI and PACS sub-millimetre and far-infrared line
observations of several molecular species towards the S-type AGB star W Aql. We
use these observations, which probe a wide range of gas temperatures, to
constrain the circumstellar properties of W Aql, including mass-loss rate and
molecular abundances. We used radiative transfer codes to model the
circumstellar dust and molecular line emission to determine circumstellar
properties and molecular abundances. We assumed a spherically symmetric
envelope formed by a constant mass-loss rate driven by an accelerating wind.
Our model includes fully integrated H2O line cooling as part of the solution of
the energy balance. We detect circumstellar molecular lines from CO, H2O, SiO,
HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer
calculations result in an estimated mass-loss rate for W Aql of 4.0e-6 Msol
yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in
line with ratios previously derived for S-type AGB stars. We find an H2O
abundance of 1.5e-5, which is intermediate to the abundances expected for M and
C stars, and an ortho/para ratio for H2O that is consistent with formation at
warm temperatures. We find an HCN abundance of 3e-6, and, although no CN lines
are detected using HIFI, we are able to put some constraints on the abundance,
6e-6, and distribution of CN in W Aql's circumstellar envelope using
ground-based data. We find an SiO abundance of 3e-6, and an NH3 abundance of
1.7e-5, confined to a small envelope.Comment: 17 pages, 15 figure
Semiclassical Theory of Bardeen-Cooper-Schrieffer Pairing-Gap Fluctuations
Superfluidity and superconductivity are genuine many-body manifestations of
quantum coherence. For finite-size systems the associated pairing gap
fluctuates as a function of size or shape. We provide a parameter free
theoretical description of pairing fluctuations in mesoscopic systems
characterized by order/chaos dynamics. The theory accurately describes
experimental observations of nuclear superfluidity (regular system), predicts
universal fluctuations of superconductivity in small chaotic metallic grains,
and provides a global analysis in ultracold Fermi gases.Comment: 4 pages, 2 figure
Characterization of a dense aperture array for radio astronomy
EMBRACE@Nancay is a prototype instrument consisting of an array of 4608
densely packed antenna elements creating a fully sampled, unblocked aperture.
This technology is proposed for the Square Kilometre Array and has the
potential of providing an extremely large field of view making it the ideal
survey instrument. We describe the system,calibration procedures, and results
from the prototype.Comment: 17 pages, accepted for publication in A&
- …