52 research outputs found

    Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data

    Full text link
    This work studies the generalization of semi-supervised generative adversarial networks (GANs) to regression tasks. A novel feature layer contrasting optimization function, in conjunction with a feature matching optimization, allows the adversarial network to learn from unannotated data and thereby reduce the number of labels required to train a predictive network. An analysis of simulated training conditions is performed to explore the capabilities and limitations of the method. In concert with the semi-supervised regression GANs, an improved label topology and upsampling technique for multi-target regression tasks are shown to reduce data requirements. Improvements are demonstrated on a wide variety of vision tasks, including dense crowd counting, age estimation, and automotive steering angle prediction. With training data limitations arguably being the most restrictive component of deep learning, methods which reduce data requirements hold immense value. The methods proposed here are general-purpose and can be incorporated into existing network architectures with little or no modifications to the existing structure

    Nucleosynthetic Layers in the Shocked Ejecta of Cassiopeia A

    Get PDF
    We present a three-dimensional analysis of the supernova remnant Cassiopeia A using high-resolution spectra from the Spitzer Space Telescope. We observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the reverse shock of the remnant is spherical to within 7%, although the center of this sphere is offset from the geometric center of the remnant by 810 km s^(–1). We determine that the velocity width of the nucleosynthetic layers is ~1000 km s^(–1) over 4000 arcsec^2 regions, although the velocity width of a layer along any individual line of sight is <250 km s^(–1). Si and O, which come from different nucleosynthetic layers in the progenitor star, are observed to be coincident in velocity space in some directions, but segregated by up to ~500 km s^(–1) in other directions. We compare these observations of the nucleosynthetic layers to predictions from supernova explosion models in an attempt to constrain such models. Finally, we observe small-scale, corrugated velocity structures that are likely caused during the supernova explosion itself, rather than hundreds of years later by dynamical instabilities at the remnant's reverse shock

    Free-Floating planet Mass Function from MOA-II 9-year survey towards the Galactic Bulge

    Full text link
    We present the first measurement of the mass function of free-floating planets (FFP) or very wide orbit planets down to an Earth mass, from the MOA-II microlensing survey in 2006-2014. Six events are likely to be due to planets with Einstein radius crossing times, tE<0.5t_{\rm E}<0.5days, and the shortest has tE=0.057±0.016t_{\rm E} = 0.057\pm 0.016days and an angular Einstein radius of θE=0.90±0.14μ\theta_{\rm E} = 0.90\pm 0.14\muas. We measure the detection efficiency depending on both tEt_{\rm E} and θE\theta_{\rm E} with image level simulations for the first time. These short events are well modeled by a power-law mass function, dN4/dlogM=(2.181.40+0.52)×(M/8M)α4dN_4/d\log M = (2.18^{+0.52}_{-1.40})\times (M/8\,M_\oplus)^{-\alpha_4} dex1^{-1}star1^{-1} with α4=0.960.27+0.47\alpha_4 = 0.96^{+0.47}_{-0.27} for M/M<0.02M/M_\odot < 0.02. This implies a total of f=2113+23f= 21^{+23}_{-13} FFP or very wide orbit planets of mass 0.33<M/M<66600.33<M/M_\oplus < 6660 per star, with a total mass of 8047+73M80^{+73}_{-47} M_\oplus per star. The number of FFPs is 1913+2319_{-13}^{+23} times the number of planets in wide orbits (beyond the snow line), while the total masses are of the same order. This suggests that the FFPs have been ejected from bound planetary systems that may have had an initial mass function with a power-law index of α0.9\alpha\sim 0.9, which would imply a total mass of 17152+80M171_{-52}^{+80} M_\oplus star1^{-1}. This model predicts that Roman Space Telescope will detect 988566+1848988^{+1848}_{-566} FFPs with masses down to that of Mars (including 575424+1733575^{+1733}_{ -424} with 0.1M/M10.1 \le M/M_\oplus \le 1). The Sumi(2011) large Jupiter-mass FFP population is excluded.Comment: 17 pages, 7 figures, accepted for publication in A

    MOA-2020-BLG-135Lb: A New Neptune-class Planet for the Extended MOA-II Exoplanet Microlens Statistical Analysis

    Full text link
    We report the light-curve analysis for the event MOA-2020-BLG-135, which leads to the discovery of a new Neptune-class planet, MOA-2020-BLG-135Lb. With a derived mass ratio of q=1.520.31+0.39×104q=1.52_{-0.31}^{+0.39} \times 10^{-4} and separation s1s\approx1, the planet lies exactly at the break and likely peak of the exoplanet mass-ratio function derived by the MOA collaboration (Suzuki et al. 2016). We estimate the properties of the lens system based on a Galactic model and considering two different Bayesian priors: one assuming that all stars have an equal planet-hosting probability and the other that planets are more likely to orbit more massive stars. With a uniform host mass prior, we predict that the lens system is likely to be a planet of mass mplanet=11.36.9+19.2Mm_\mathrm{planet}=11.3_{-6.9}^{+19.2} M_\oplus and a host star of mass Mhost=0.230.14+0.39MM_\mathrm{host}=0.23_{-0.14}^{+0.39} M_\odot, located at a distance DL=7.91.0+1.0  kpcD_L=7.9_{-1.0}^{+1.0}\;\mathrm{kpc}. With a prior that holds that planet occurrence scales in proportion to the host star mass, the estimated lens system properties are mplanet=2515+22Mm_\mathrm{planet}=25_{-15}^{+22} M_\oplus, Mhost=0.530.32+0.42MM_\mathrm{host}=0.53_{-0.32}^{+0.42} M_\odot, and DL=8.31.0+0.9  kpcD_L=8.3_{-1.0}^{+0.9}\; \mathrm{kpc}. This planet qualifies for inclusion in the extended MOA-II exoplanet microlens sample.Comment: 22 pages, 6 figures, 4 tables, submitted to the AAS Journal

    OGLE-2014-BLG-0221Lb: A Jupiter Mass Ratio Companion Orbiting Either a Late-type Star or a Stellar Remnant

    Get PDF
    Kirikawa R., Sumi T., Bennett D.P., et al. OGLE-2014-BLG-0221Lb: A Jupiter Mass Ratio Companion Orbiting Either a Late-type Star or a Stellar Remnant. Astronomical Journal 167, 154 (2024); https://doi.org/10.3847/1538-3881/ad2703.We present the analysis of the microlensing event OGLE-2014-BLG-0221, a planetary candidate event discovered in 2014. The photometric light curve is best described by a binary-lens single-source model. Our light-curve modeling finds two degenerate models, with event timescales of t E ∼ 70 days and ∼110 days. These timescales are relatively long, indicating that the discovered system would possess a substantial mass. The two models are similar in their planetary parameters with a Jupiter mass ratio of q ∼ 10−3 and a separation of s ∼ 1.1. Bayesian inference is used to estimate the physical parameters of the lens, revealing that the shorter timescale model predicts 65% and 25% probabilities of a late-type star and white dwarf host, respectively, while the longer timescale model favors a black hole host with a probability ranging from 60% to 95%, under the assumption that stars and stellar remnants have equal probabilities of hosting companions with planetary mass ratios. If the lens is a remnant, this would be the second planet found by microlensing around a stellar remnant. The current separation between the source and lens stars is 41-139 mas depending on the models. This indicates the event is now ready for high-angular-resolution follow-up observations to rule out either of the models. If precise astrometric measurements are conducted in multiple bands, the centroid shift due to the color difference between the source and lens would be detected in the luminous lens scenario

    Brown dwarf companions in binaries detected from the 2021 season high-cadence microlensing surveys

    Full text link
    As a part of the project aiming to build a homogeneous sample of binary-lens (2L1S) events containing brown-dwarf (BD) companions, we investigate the 2021 season microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. For this purpose, we first identify 2L1S events by conducting systematic analyses of anomalous lensing events. We then select candidate BD-companion events by applying the criterion that the mass ratio between the lens components is less than qth0.1q_{\rm th}\sim 0.1. From this procedure, we find four binary-lens events including KMT-2021-BLG-0588, KMT-2021-BLG-1110, KMT-2021-BLG-1643, and KMT-2021-BLG-1770, for which the estimated mass ratios are q0.10q\sim 0.10, 0.07, 0.08, and 0.15, respectively. The event KMT-2021-BLG-1770 is selected as a candidate despite the fact that the mass ratio is slightly greater than qthq_{\rm th} because the lens mass expected from the measured short time scale of the event, tE7.6t_{\rm E}\sim 7.6~days, is small. From the Bayesian analyses, we estimate that the primary and companion masses are (M1/M,M2/M)=(0.540.24+0.31,0.0530.023+0.031)(M_1/M_\odot, M_2/M_\odot)= (0.54^{+0.31}_{-0.24}, 0.053^{+0.031}_{-0.023}) for KMT-2021-BLG-0588L, (0.740.35+0.27,0.0550.026+0.020)(0.74^{+0.27}_{-0.35}, 0.055^{+0.020}_{-0.026}) for KMT-2021-BLG-1110L, (0.730.17+0.24,0.0610.014+0.020)(0.73^{+0.24}_{-0.17}, 0.061^{+0.020}_{-0.014}) for KMT-2021-BLG-1643L, and (0.130.07+0.18,0.0200.011+0.028)(0.13^{+0.18}_{-0.07}, 0.020^{+0.028}_{-0.011}) for KMT-2021-BLG-1770L. It is estimated that the probabilities of the lens companions being in the BD mass range are 82\%, 85\%, 91\%, and 59\% for the individual events. For confirming the BD nature of the lens companions found in this and previous works by directly imaging the lenses from future high-resolution adaptive-optics (AO) followup observations, we provide the lens-source separations expected in 2030, which is an approximate year of the first AO light on 30~m class telescopes.Comment: 11 pages, 10 tables, 8 figure

    KMT-2021-BLG-1077L: The fifth confirmed multiplanetary system detected by microlensing

    Full text link
    The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. We test various models in combination with several interpretations. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are 1.56×103\sim 1.56 \times 10^{-3} and 1.75×103\sim 1.75 \times 10^{-3}, which correspond to 1.6\sim 1.6 and 1.8\sim 1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with a mass of Mh=0.140.07+0.19 MM_{\rm h} = 0.14^{+0.19}_{-0.07}~M_\odot, and it hosts two gas giant planets with masses of Mp1=0.220.12+0.31 MJM_{\rm p_1}=0.22^{+0.31}_{-0.12}~M_{\rm J} and Mp2=0.250.13+0.35 MJM_{\rm p_2}=0.25^{+0.35}_{-0.13}~M_{\rm J}. The planets lie beyond the snow line of the host with projected separations of a,p1=1.261.08+1.41 AUa_{\perp, {\rm p}_1}=1.26^{+1.41}_{-1.08}~{\rm AU} and a,p2=0.930.80+1.05 AUa_{\perp, {\rm p}_2}=0.93^{+1.05}_{-0.80}~{\rm AU}. The planetary system resides in the Galactic bulge at a distance of DL=8.241.16+1.02 kpcD_{\rm L}=8.24^{+1.02}_{-1.16}~{\rm kpc}. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.Comment: 9 pages, 8 figure
    corecore