4 research outputs found

    Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia

    Get PDF
    RATIONALE The standard approach to diagnosis of primary ciliary dyskinesia (PCD) in the UK consists of assessing ciliary function by high-speed-microscopy and ultrastructure by election microscopy, but equipment and expertise is not widely available internationally. The identification of bi-allelic disease causing mutations is also diagnostic, but many disease causing genes are unknown, and testing is not widely available outside the USA. Fluorescent antibodies to ciliary proteins are used to validate research genetic studies, but diagnostic utility in this disease has not been systematically evaluated. OBJECTIVES: Determine utility of a panel of six fluorescent labelled antibodies as a diagnostic tool for PCD. METHODS: Immunofluorescent labelling of nasal brushings from a discovery cohort of 35 patients diagnosed with PCD by ciliary ultrastructure, and a diagnostic accuracy cohort of 386 patients referred with symptoms suggestive of disease. The results were compared to diagnostic outcome. MEASUREMENTS AND MAIN RESULTS: Immunofluorescence correctly identified mislocalised or absent staining in 100% of the discovery cohort. In the diagnostic cohort immunofluorescence successfully identified 22 of 25 patients with PCD and normal staining in all 252 in whom PCD was considered highly unlikely. Immunofluorescence additionally provided a result in 55% (39) of cases which were previously inconclusive. Immunofluorescence results were available within 14 days, costing 187persamplecomparedtoelectronmicroscopy(27days,cost187 per sample compared to electron microscopy (27 days, cost 1452). CONCLUSIONS: Immunofluorescence is a highly specific diagnostic test for PCD, and improves the speed and availability of diagnostic testing, however, sensitivity is limited and immunofluorescence is not suitable as a stand-alone test

    Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is associated with abnormal organ positioning (situs) and congenital heart disease (CHD). This study investigated genotype–phenotype associations in PCD to facilitate risk predictions for cardiac and laterality defects. This retrospective cohort study of 389 UK patients with PCD found 51% had abnormal situs and 25% had CHD and/or laterality defects other than situs inversus totalis. Patients with biallelic mutations in a subset of nine PCD genes had normal situs. Patients with consanguineous parents had higher odds of situs abnormalities than patients with non-consanguineous parents. Patients with abnormal situs had higher odds of CHD and/or laterality defects

    Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort

    Get PDF
    Background Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests.Methods The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries.Results Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results.Conclusions This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening

    Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function

    No full text
    We have previously reported cyanide at concentrations of up to 150 mM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n56) after 60 min (150 mM: 47% fall, p,0.0012; 75 mM: 32% fall, p,0.0001). Samples from cystic fibrosis patients (n53) showed similar results (150 mM: 55% fall, p50.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway.</p
    corecore