1,284 research outputs found

    Modulation Transfer Function (MTF) evaluation for x-ray phase imaging system employing attenuation masks

    Get PDF
    OBJECTIVE: Attenuation masks can be used in x-ray imaging systems to increase their inherent spatial resolution and/or make them sensitive to phase effects, a typical example being Edge Illumination X-ray phase contrast imaging (EI-XPCI). This work investigates the performance of a mask-based system such as EI-XPCI in terms of Modulation Transfer Function (MTF), in the absence of phase effects. APPROACH: Pre-sampled MTF measurements, using an edge, were performed on the same system implemented without masks, with non-skipped masks and finally with skipped masks (i.e., masks in which apertures illuminate every other pixel row/column). Results are compared to simulations and finally images of a resolution bar pattern acquired with all the above setups are presented. MAIN RESULTS: Compared to the detector's inherent MTF, the non-skipped mask setup provides improved MTF results. In comparison to an ideal case where signal spill-out into neighbouring pixels is negligible, this improvement takes place only at specific frequencies of the MTF, dictated by the spatial repetition of the spill-out signal. This is limited with skipped masks, which indeed provide further MTF improvements over a larger frequency range. Experimental MTF measurements are supported through simulation and resolution bar pattern images. SIGNIFICANCE: This work has quantified the improvement in MTF due to the use of attenuation masks and lays the foundation for how acceptance and routine quality control tests will have to be modified when systems using masks are introduced in clinical practice and how MTF results will compare to those of conventional imaging systems

    Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    Get PDF
    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI’s achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    A Methodology for Performing Meta-analyses of Developers Attitudes Towards Programming Practices

    Get PDF
    Programming practices are often labelled as “best practice” and “bad practice” by developers. This label can be subjective but we can see trends among developers. A methodology for performing meta-analyses of articles discussing any given practice was created to determine programmers overall attitudes towards any given practice while accounting for factors such as whether they considered alternative approaches

    Increased material differentiation through multi-contrast x-ray imaging: a preliminary evaluation of potential applications to the detection of threat materials

    Full text link
    Most material discrimination in security inspections is based on dual-energy x-ray imaging, which enables the determination of a material's effective atomic number (Zeff) as well as electron density and its consequent classification as organic or inorganic. Recently phase-based "dark-field" x-ray imaging approaches have emerged that are sensitive to complementary features of a material, namely its unresolved microstructure. It can therefore be speculated that their inclusion in the security-based imaging could enhance material discrimination, for example of materials with similar electron densities and Z eff but different microstructures. In this paper, we present a preliminary evaluation of the advantages that such a combination could bear. Utilising an energy-resolved detector for a phase-based dark-field technique provides dual-energy attenuation and dark-field images simultaneously. In addition, since we use a method based on attenuating x-ray masks to generate the dark-field images, a fifth (attenuation) image at a much higher photon energy is obtained by exploiting the x-rays transmitted through the highly absorbing mask septa. In a first test, a threat material is imaged against a non-threat one, and we show how their discrimination based on maximising their relative contrast through linear combinations of two and five imaging channels leads to an improvement in the latter case. We then present a second example to show how the method can be extended to discrimination against more than one non-threat material, obtaining similar results. Albeit admittedly preliminary, these results indicate that significant margins of improvement in material discrimination are available by including additional x-ray contrasts in the scanning process

    A first investigation of accuracy, precision and sensitivity of phase-based x-ray dark-field imaging

    Get PDF
    In the last two decades, x-ray phase contrast imaging (XPCI) has attracted attention as a potentially significant improvement over widespread and established x-ray imaging. The key is its capability to access a new physical quantity (the ‘phase shift’), which can be complementary to x-ray absorption. One additional advantage of XPCI is its sensitivity to micro structural details through the refraction induced dark-field (DF). While DF is extensively mentioned and used for several applications, predicting the capability of an XPCI system to retrieve DF quantitatively is not straightforward. In this article, we evaluate the impact of different design options and algorithms on DF retrieval for the Edge-Illumination (EI) XPCI technique. Monte Carlo simulations, supported by experimental data, are used to measure the accuracy, precision and sensitivity of DF retrieval performed with several EI systems based on conventional x-ray sources. The introduced tools are easy to implement, and general enough to assess the DF performance of systems based on alternative (i.e. non-EI) XPCI approaches

    Migraine and gastrointestinal disorders in middle and old age: A UK Biobank study

    Get PDF
    Introduction: Migraine is a prevalent condition causing a substantial level of disability worldwide. Despite this, the pathophysiological mechanisms are not fully understood. Migraine often co-occurs with gastrointestinal disorders, but the direction of a potential causal link is unclear. The aim of this project was to investigate the associations between migraine and several gastrointestinal disorders in the same cohort in order to determine the relative strengths of these associations. Methods: This cross-sectional study examined whether migraine is associated with irritable bowel syndrome (IBS), peptic ulcers, Helicobacter pylori (HP) infections, celiac disease, Crohn's disease and ulcerative colitis. Baseline data covering 489,753 UK Biobank participants (migraine group: n = 14,180) were analyzed using Pearson's chi-square tests and adjusted binary logistic regression models. Results: Migraine was significantly associated with IBS (odds ratio [OR] 2.24, 95% confidence interval [CI] 2.08–2.40, p <.001) and peptic ulcers (OR 1.55, 95% CI 1.35–1.77, p <.001). Migraine was not associated with HP infection (OR 1.34, 95% CI 1.04–1.73, p =.024), celiac disease (OR 1.29, 95% CI 1.04–1.60, p =.023), Crohn's disease (OR 1.08, 95% CI 0.80–1.45, p =.617) or ulcerative colitis (OR 1.00, 95% CI 0.79–1.27, p =.979) after adjusting for multiple testing. Conclusions: Migraine was associated with IBS and peptic ulcers in this large population-based cohort. The associations with HP infection, celiac disease, Crohn's disease, and ulcerative colitis did not reach significance, suggesting a weaker link between migraine and autoimmune gastrointestinal conditions or HP infection

    Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    Get PDF
    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF
    corecore