34 research outputs found

    Learning t-doped stabilizer states

    Full text link
    In this paper, we present a learning algorithm aimed at learning states obtained from computational basis states by Clifford circuits doped with a finite number t of non-Clifford gates. To tackle this problem, we introduce a novel algebraic framework for t-doped stabilizer states by utilizing tools from stabilizer entropy. Leveraging this new structure, we develop an algorithm that uses sampling from the distribution obtained by squaring expectation values of Pauli operators that can be obtained by Bell sampling on the state and its conjugate in the computational basis. The algorithm requires resources of complexity O(\exp(t)\poly(n)) and exhibits an exponentially small probability of failure.Comment: L.L. and S.O. contributed equally to this wor

    Isospectral twirling and quantum chaos

    Get PDF
    We show that the most important measures of quantum chaos, such as frame potentials, scrambling, Loschmidt echo and out-of-time-order correlators (OTOCs), can be described by the unified framework of the isospectral twirling, namely the Haar average of a k-fold unitary channel. We show that such measures can then always be cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that thanks to this technique, we can interpolate smoothly between integrable Hamiltonians and quantum chaotic Hamiltonians. The isospectral twirling of Hamiltonians with eigenvector stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. By doping Hamiltonians with non-Clifford resources, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos. Moreover, exploiting random matrix theory, we show that these measures of quantum chaos clearly distinguish the finite time behavior of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE)

    Isospectral twirling and quantum chaos

    Get PDF
    We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time-order correlators (OTOCs) can be described by the unified framework of the isospectral twirling, namely the Haar average of a kk-fold unitary channel. We show that such measures can then be always cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE). On the other hand, we show that the asymptotic values do depend on the eigenvectors of the Hamiltonian. We see that the isospectral twirling of Hamiltonians with eigenvectors stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. Finally, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos.Comment: Updated version with several new result

    Transitions in entanglement complexity in random quantum circuits by measurements

    Get PDF
    Random Clifford circuits doped with non Clifford gates exhibit transitions to universal entanglement spectrum statistics[1] and quantum chaotic behavior. In [2] we proved that the injection of O(n)O(n) non Clifford gates into a nn-qubit Clifford circuit drives the transition towards the universal value of the purity fluctuations. In this paper, we show that doping a Clifford circuit with O(n)O(n) single qubit non Clifford measurements is both necessary and sufficient to drive the transition to universal fluctuations of the purity

    Transitions in entanglement complexity in random quantum circuits by measurements

    Get PDF
    Random Clifford circuits doped with non Clifford gates exhibit transitions to universal entanglement spectrum statistics [1] and quantum chaotic behavior. In [2] we proved that the injection of Ω(n) non Clifford gates into a n-qubit Clifford circuit drives the transition towards the universal value of the purity fluctuations. In this paper, we show that doping a Clifford circuit with Ω(n) single qubit non Clifford measurements is both necessary and sufficient to drive the transition to universal fluctuations of the purity

    Phase transition in Stabilizer Entropy and efficient purity estimation

    Full text link
    Stabilizer Entropy (SE) quantifies the spread of a state in the basis of Pauli operators. It is a computationally tractable measure of non-stabilizerness and thus a useful resource for quantum computation. SE can be moved around a quantum system, effectively purifying a subsystem from its complex features. We show that there is a phase transition in the residual subsystem SE as a function of the density of non-Clifford resources. This phase transition has important operational consequences: it marks the onset of a subsystem purity estimation protocol that requires O(poly(n)2t)O(\operatorname{poly}(n)2^t) many queries to a circuit containing tt non-Clifford gates that prepares the state from a stabilizer state. Thus, for t=O(logn)t=O(\log n), it estimates the purity with polynomial resources and, for highly entangled states, attains an exponential speed-up over the known state-of-the-art algorithms

    Quantum chaos is quantum

    Get PDF
    It is well known that a quantum circuit on N qubits composed of Clifford gates with the addition of k non Clifford gates can be simulated on a classical computer by an algorithm scaling as poly(N)exp (k)[1]. We show that, for a quantum circuit to simulate quantum chaotic behavior, it is both necessary and sufficient that k = Θ(N). This result implies the impossibility of simulating quantum chaos on a classical computer

    On the practical usefulness of the Hardware Efficient Ansatz

    Full text link
    Variational Quantum Algorithms (VQAs) and Quantum Machine Learning (QML) models train a parametrized quantum circuit to solve a given learning task. The success of these algorithms greatly hinges on appropriately choosing an ansatz for the quantum circuit. Perhaps one of the most famous ansatzes is the one-dimensional layered Hardware Efficient Ansatz (HEA), which seeks to minimize the effect of hardware noise by using native gates and connectives. The use of this HEA has generated a certain ambivalence arising from the fact that while it suffers from barren plateaus at long depths, it can also avoid them at shallow ones. In this work, we attempt to determine whether one should, or should not, use a HEA. We rigorously identify scenarios where shallow HEAs should likely be avoided (e.g., VQA or QML tasks with data satisfying a volume law of entanglement). More importantly, we identify a Goldilocks scenario where shallow HEAs could achieve a quantum speedup: QML tasks with data satisfying an area law of entanglement. We provide examples for such scenario (such as Gaussian diagonal ensemble random Hamiltonian discrimination), and we show that in these cases a shallow HEA is always trainable and that there exists an anti-concentration of loss function values. Our work highlights the crucial role that input states play in the trainability of a parametrized quantum circuit, a phenomenon that is verified in our numerics

    Stability of topological purity under random local unitaries

    Get PDF
    In this work, we provide an analytical proof of the robustness of topological entanglement under a model of random local perturbations. We define a notion of average topological subsystem purity and show that, in the context of quantum double models, this quantity does detect topological order and is robust under the action of a random quantum circuit of shallow depth.Comment: Added new reference

    Random Matrix Theory of the Isospectral twirling

    Get PDF
    We present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref.[1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCs, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.Comment: Submission to SciPos
    corecore