79 research outputs found

    Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model

    Full text link
    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201

    The global surface roughness of 25143 Itokawa

    Get PDF
    Surface roughness is an important metric in understanding how the geologic history of an asteroid affects its small-scale topography and it provides an additional means to quantitatively compare one asteroid with another. In this study, we report the first detailed global surface roughness maps of 25143 Itokawa at horizontal scales from 8--32~m. Comparison of the spatial distribution of the surface roughness of Itokawa with 433 Eros, the other asteroid for which this kind of analysis has been possible, indicates that the two asteroids are dominated by different geologic processes. On Itokawa, the surface roughness reflects the results of down-slope activity that moves fine grained material into geopotential lows and leaves large blocks in geopotential highs. On 433 Eros, the surface roughness is controlled by geologically-recent large impact craters. In addition, large longitudinal spatial variations of surface roughness could impact the role of YORP on Itokawa

    Double Asteroid Redirection Test (DART): Structural and Dynamic Interactions between Asteroidal Elements of Binary Asteroid (65803) Didymos

    Get PDF
    Abstract NASA's Double Asteroid Redirection Test (DART) mission is the first full-scale planetary defense mission. The target is the binary asteroid (65803) Didymos, in which the smaller component Dimorphos (∼164 m equivalent diameter) orbits the larger component Didymos (∼780 m equivalent diameter). The DART spacecraft will impact Dimorphos, changing the system’s mutual orbit by an amount that correlates with DART's kinetic deflection capability. The spacecraft collision with Dimorphos creates an impact crater, which reshapes the body. Also, some particles ejected from the DART impact site on Dimorphos eventually reach Didymos. Because Didymos’s rapid spin period (2.26 hr) may be close to its stability limit for structural failure, the ejecta reaching Didymos may induce surface disturbance on Didymos. While large uncertainties exist, nonnegligible reshaping scenarios on Didymos and Dimorphos are possible if certain conditions are met. Our analysis shows that given a surface slope uncertainty on Dimorphos of 45°, with no other information about its local topography, and if the DART-like impactor is treated as spherical, the ejecta cone crosses Didymos with speeds ≳14 m s−1 in 13% of simulations. Additional work is necessary to determine the amount of mass delivered to Didymos from the DART impact and whether the amount of kinetic energy delivered is sufficient to overcome cohesive forces in those cases. If nonnegligible (but small) reshaping occurs for either of these asteroids, the resulting orbit perturbation and reshaping are measurable by Earth-based observations.</jats:p

    Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Get PDF
    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science

    Investigating the DART Impact Event with the Lucy LOng Range Reconnaissance Imager

    Get PDF
    NASA’s Lucy mission is the first to provide flyby reconnaissance of the Jovian trojan asteroids, which are thought to be primordial small bodies that formed at a variety of heliocentric distances during the early stages of the solar system’s formation and were subsequently captured into Jupiter’s L4 and L5 Lagrange stability zones. Since its successful launch on 2021-Oct-16, the Lucy spacecraft has been orbiting the sun within the inner solar system. On 2022-Oct-16, Lucy executes the first of three Earth Gravity Assists (EGAs) that put the spacecraft on the correct trajectory to achieve its encounters with the Jovian trojans. The DART kinetic impact on the secondary body of the Didymos-Dimorphos binarysystem occurs 20 days prior to EGA1, at a time when the Lucy spacecraft is well-placed to observe it. Lucy carries a sensitive panchromatic camera, the Lucy LOng Range Reconnaissance Imager (L’LORRI), which is capable of detecting the binary system with high signal-to-noise ratio (SNR) and with temporal cadences as fast as once per second. The observing geometry from Lucy is similar to that from the Earth: the range to the Didymos system is 0.126 au from Lucy vs 0.0757 au from Earth, and the solar phase angle is 31.9 deg vs 53.2 deg. The L’LORRI investigation of the DART impact event is divided into eight separate observational phases, starting 12 hr before the impact and ending 24 hr afterwards. L’LORRI cannot resolve the binary, but instead records the total brightness, which is expected to increase after the DART impact due to reflected sunlight from the ejecta. The first two phases are designed to obtain baseline photometry of the Didymos system covering both the Didymos-Dimorphos mutual orbit period (11.92 hr) and the rotational period of Didymos (2.26 hr). Phase 3 covers the impact event itself at one second cadence, starting 3 minutes beforeimpact and ending 4 minutes afterwards. Lucy has a clear view of the predicted DART impact site, theoretically enablingL’LORRI to detect an optical flash in the unlikely event it is brighter than Didymos itself. L’LORRI observations during phases 4 through 8 are designed to monitor the temporal and spatial evolution of ejecta associated with the impact event, but ejecta don’t leave the central pixel during Lucy’s observing period unless their speed is greater than about 2 m/s

    Effects of Impact and Target Parameters on the Results of a Kinetic Impactor: Predictions for the Double Asteroid Redirection Test (DART) Mission

    Get PDF
    The Double Asteroid Redirection Test (DART) spacecraft will impact into the asteroid Dimorphos on 2022 September 26 as a test of the kinetic impactor technique for planetary defense. The efficiency of the deflection following a kinetic impactor can be represented using the momentum enhancement factor, β, which is dependent on factors such as impact geometry and the specific target material properties. Currently, very little is known about Dimorphos and its material properties, which introduces uncertainty in the results of the deflection efficiency observables, including crater formation, ejecta distribution, and β. The DART Impact Modeling Working Group (IWG) is responsible for using impact simulations to better understand the results of the DART impact. Pre-impact simulation studies also provide considerable insight into how different properties and impact scenarios affect momentum enhancement following a kinetic impact. This insight provides a basis for predicting the effects of the DART impact and the first understanding of how to interpret results following the encounter. Following the DART impact, the knowledge gained from these studies will inform the initial simulations that will recreate the impact conditions, including providing estimates for potential material properties of Dimorphos and β resulting from DART’s impact. This paper summarizes, at a high level, what has been learned from the IWG simulations and experiments in preparation for the DART impact. While unknown, estimates for reasonable potential material properties of Dimorphos provide predictions for β of 1–5, depending on end-member cases in the strength regime

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
    • …
    corecore