98 research outputs found

    Error Exponents of Low-Density Parity-Check Codes on the Binary Erasure Channel

    Full text link
    We introduce a thermodynamic (large deviation) formalism for computing error exponents in error-correcting codes. Within this framework, we apply the heuristic cavity method from statistical mechanics to derive the average and typical error exponents of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) under maximum-likelihood decoding.Comment: 5 pages, 4 figure

    A Model for the Generation and Transmission of Variations in Evolution

    Full text link
    The inheritance of characteristics induced by the environment has often been opposed to the theory of evolution by natural selection. Yet, while evolution by natural selection requires new heritable traits to be produced and transmitted, it does not prescribe, per se, the mechanisms by which this is operated. The mechanisms of inheritance are not, however, unconstrained, since they are themselves subject to natural selection. We introduce a general, analytically solvable mathematical model to compare the adaptive value of different schemes of inheritance. Our model allows for variations to be inherited, randomly produced, or environmentally induced, and, irrespectively, to be either transmitted or not during reproduction. The adaptation of the different schemes for processing variations is quantified for a range of fluctuating environments, following an approach that links quantitative genetics with stochastic control theory

    Evolution of sparsity and modularity in a model of protein allostery

    Full text link
    The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analyses and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. Besides, the model illustrates how several independent functional modules may emerge within a same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history and evolutionary potential of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences

    Biologie statistique / Statistical biology

    Get PDF
    Recherche Page web : https://www.college-de-france.fr/site/en-cirb/rivoire.htm. Notre équipe cherche à comprendre les principes sous-jacents aux capacités d’adaptation des systèmes biologiques. Notre approche est inspirée de la physique statistique et combine des analyses de séquences génomiques, des expériences quantitatives in vitro et des modèles mathématiques. Nos projets actuels sont organisés autour de trois systèmes modèles : les anticorps, les protéases et les génomes bactériens. Nos ..
    • …
    corecore