11,257 research outputs found

    Image Ellipticity from Atmospheric Aberrations

    Get PDF
    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1 / sqrt(N)). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.Comment: 9 pages, 5 color figures (some reduced in size). Accepted for publication in the Astrophysical Journa

    Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials

    Get PDF
    An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is developed using Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geometries. A general formula for the asymmetric resonance in a non-conservative system is derived. The influence of the electromagnetic interactions on the resonance line shape is discussed and it is shown that intrinsic losses drive the resonance contrast, while its width is mostly determined by the coupling strength between the non-radiative mode and the continuum. The analytical model is in perfect agreement with numerical simulations.Comment: 13 pages, 5 figure

    First experimental demonstration of temporal hypertelescope operation with a laboratory prototype

    Full text link
    In this paper, we report the first experimental demonstration of a Temporal HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested in a manual cophasing configuration on a 1D object. The Point Spread Function (PSF) is measured and exhibits a dynamics in the range of 300. A quantitative analysis of the potential biases demonstrates that this limitation is related to the residual phase fluctuation on each interferometric arm. Secondly, an unbalanced binary star is imaged demonstrating the imaging capability of THT. In addition, 2D PSF is recorded even if the telescope array is not optimized for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure

    Photonic crystal fibre source of photon pairs for quantum information processing

    Full text link
    We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a χ(3)\chi^{(3)} four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.Comment: 4 pages, 3 figure

    Factorization of finite temperature graphs in thermal QED

    Full text link
    We extend our previous analysis of gauge and Dirac fields in the presence of a chemical potential. We consider an alternate thermal operator which relates in a simple way the Feynman graphs in QED at finite temperature and charge density to those at zero temperature but non-zero chemical potential. Several interesting features of such a factorization are discussed in the context of the thermal photon and fermion self-energies.Comment: 4 page

    Thermal Operator Representation of Finite Temperature Graphs

    Full text link
    Using the mixed space representation (t,p) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed.Comment: 20 pages, seven figure

    Pair Contact Process with Diffusion: Failure of Master Equation Field Theory

    Full text link
    We demonstrate that the `microscopic' field theory representation, directly derived from the corresponding master equation, fails to adequately capture the continuous nonequilibrium phase transition of the Pair Contact Process with Diffusion (PCPD). The ensuing renormalization group (RG) flow equations do not allow for a stable fixed point in the parameter region that is accessible by the physical initial conditions. There exists a stable RG fixed point outside this regime, but the resulting scaling exponents, in conjunction with the predicted particle anticorrelations at the critical point, would be in contradiction with the positivity of the equal-time mean-square particle number fluctuations. We conclude that a more coarse-grained effective field theory approach is required to elucidate the critical properties of the PCPD.Comment: revtex, 8 pages, 1 figure include

    The Statistics of the Number of Minima in a Random Energy Landscape

    Full text link
    We consider random energy landscapes constructed from d-dimensional lattices or trees. The distribution of the number of local minima in such landscapes follows a large deviation principle and we derive the associated law exactly for dimension 1. Also of interest is the probability of the maximum possible number of minima; this probability scales exponentially with the number of sites. We calculate analytically the corresponding exponent for the Cayley tree and the two-leg ladder; for 2 to 5 dimensional hypercubic lattices, we compute the exponent numerically and compare to the Cayley tree case.Comment: 18 pages, 8 figures, added background on landscapes and reference

    The thermal operator representation for Matsubara sums

    Full text link
    We prove in full generality the thermal operator representation for Matsubara sums in a relativistic field theory of scalar and fermionic particles. It states that the full result of performing the Matsubara sum associated to any given Feynman graph, in the imaginary-time formalism of finite-temperature field theory, can be directly obtained from its corresponding zero-temperature energy integral, by means of a simple linear operator, which is independent of the external Euclidean energies and whose form depends solely on the topology of the graph.Comment: 9 pages, 1 figure, RevTe

    Turbulence lifetimes: what we can learn from the physics of glasses

    Full text link
    In this note, we critically discuss the issue of the possible finiteness of the turbulence lifetime in subcritical transition to turbulence in shear flows, which attracted a lot of interest recently. We briefly review recent experimental and numerical results, as well as theoretical proposals, and compare the difficulties arising in assessing this issue in subcritical shear flow with that encountered in the study of the glass transition. In order to go beyond the purely methodological similarities, we further elaborate on this analogy and propose a qualitative mapping between these two apparently unrelated situations, which could possibly foster new directions of research in subcritical shear flows.Comment: 10 pages, 4 figure
    corecore