19,165 research outputs found
The evaluation of Tornheim double sums. Part 1
We provide an explicit formula for the Tornheim double series in terms of
integrals involving the Hurwitz zeta function. We also study the limit when the
parameters of the Tornheim sum become natural numbers, and show that in that
case it can be expressed in terms of definite integrals of triple products of
Bernoulli polynomials and the Bernoulli function .Comment: 23 pages, AMS-LaTex, to appear in Journal of Number Theor
Bijections and symmetries for the factorizations of the long cycle
We study the factorizations of the permutation into factors
of given cycle types. Using representation theory, Jackson obtained for each
an elegant formula for counting these factorizations according to the
number of cycles of each factor. In the cases Schaeffer and Vassilieva
gave a combinatorial proof of Jackson's formula, and Morales and Vassilieva
obtained more refined formulas exhibiting a surprising symmetry property. These
counting results are indicative of a rich combinatorial theory which has
remained elusive to this point, and it is the goal of this article to establish
a series of bijections which unveil some of the combinatorial properties of the
factorizations of into factors for all . We thereby obtain
refinements of Jackson's formulas which extend the cases treated by
Morales and Vassilieva. Our bijections are described in terms of
"constellations", which are graphs embedded in surfaces encoding the transitive
factorizations of permutations
Mapping genomic regions and genes associated with the fat-tail, an adaptation trait in indigenous sheep
Poster prepared for a share fair, Addis Ababa, May 201
A Primer on Reproducing Kernel Hilbert Spaces
Reproducing kernel Hilbert spaces are elucidated without assuming prior
familiarity with Hilbert spaces. Compared with extant pedagogic material,
greater care is placed on motivating the definition of reproducing kernel
Hilbert spaces and explaining when and why these spaces are efficacious. The
novel viewpoint is that reproducing kernel Hilbert space theory studies
extrinsic geometry, associating with each geometric configuration a canonical
overdetermined coordinate system. This coordinate system varies continuously
with changing geometric configurations, making it well-suited for studying
problems whose solutions also vary continuously with changing geometry. This
primer can also serve as an introduction to infinite-dimensional linear algebra
because reproducing kernel Hilbert spaces have more properties in common with
Euclidean spaces than do more general Hilbert spaces.Comment: Revised version submitted to Foundations and Trends in Signal
Processin
- …