2 research outputs found

    Placental CX3CL1 is Deregulated by Angiotensin II and Contributes to a Pro-Inflammatory Trophoblast-Monocyte Interaction

    Get PDF
    CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16+ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16+ subset of maternal monocytes

    Disturbed Cardiorespiratory Adaptation in Preeclampsia: Return to Normal Stress Regulation Shortly after Delivery?

    No full text
    Women with pregnancies complicated by preeclampsia appear to be at increased risk of metabolic and vascular diseases in later life. Previous research has also indicated disturbed cardiorespiratory adaptation during pregnancy. The aim of this study was to follow up on the physiological stress response in preeclampsia several weeks postpartum. A standardized laboratory test was used to illustrate potential deviations in the physiological stress responding to mildly stressful events of the kind and intensity in which they regularly occur in further everyday life after pregnancy. Fifteen to seventeen weeks postpartum, 35 women previously affected by preeclampsia (19 mild, 16 severe preeclampsia), 38 women after uncomplicated pregnancies, and 51 age-matched healthy controls were exposed to a self-relevant stressor in a standardized stress-reactivity protocol. Reactivity of blood pressure, heart rate, stroke index, and systemic vascular resistance index as well as baroreceptor sensitivity were analyzed. In addition, the mutual adjustment of blood pressure, heart rate, and respiration, partitioned for influences of the sympathetic and the parasympathetic branches of the autonomic nervous system, were quantified by determining their phase synchronization. Findings indicated moderately elevated blood pressure levels in the nonpathological range, reduced stroke volume, and elevated systemic vascular resistance in women previously affected by preeclampsia. Despite these moderate abnormalities, at the time of testing, women with previous preeclampsia did not differ from the other groups in their physiological response patterns to acute stress. Furthermore, no differences between early, preterm, and term preeclampsia or mild and severe preeclampsia were observed at the time of testing. The findings suggest that the overall cardiovascular responses to moderate stressors return to normal in women who experience a pregnancy with preeclampsia a few weeks after delivery, while the operating point of the arterial baroreflex is readjusted to a higher pressure. Yet, their regulation mechanisms may remain different
    corecore