46 research outputs found

    The protein translocation systems in plants - composition and variability on the example of Solanum lycopersicum

    Get PDF
    Background: Protein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species. We bioinformatically determined the inventory of putative translocation factors in tomato (Solanum lycopersicum) by orthologue search and domain architecture analyses. In addition, we investigated the diversity of such systems by comparing our findings to the model organisms Saccharomyces cerevisiae, Arabidopsis thaliana and 12 other plant species. Results: The literature search end up in a total of 130 translocation components in yeast and A. thaliana, which are either experimentally confirmed or homologous to experimentally confirmed factors. From our bioinformatic analysis (PGAP and OrthoMCL), we identified (co-)orthologues in plants, which in combination yielded 148 and 143 orthologues in A. thaliana and S. lycopersicum, respectively. Interestingly, we traced 82% overlap in findings from both approaches though we did not find any orthologues for 27% of the factors by either procedure. In turn, 29% of the factors displayed the presence of more than one (co-)orthologue in tomato. Moreover, our analysis revealed that the genomic composition of the translocation machineries in the bryophyte Physcomitrella patens resemble more to higher plants than to single celled green algae. The monocots (Z. mays and O. sativa) follow more or less a similar conservation pattern for encoding the translocon components. In contrast, a diverse pattern was observed in different eudicots. Conclusions: The orthologue search shows in most cases a clear conservation of components of the translocation pathways/machineries. Only the Get-dependent integration of tail-anchored proteins seems to be distinct. Further, the complexity of the translocation pathway in terms of existing orthologues seems to vary among plant species. This might be the consequence of palaeoploidisation during evolution in plants; lineage specific whole genome duplications in Arabidopsis thaliana and triplications in Solanum lycopersicum

    Chloroplast signal length requirement reflects the outer membrane and TOC complex dimension

    Get PDF
    Background and Purpose: The evolution of an efficient preprotein targeting and translocation system was a central prerequisite for the endosymbiotic integration of a-proteobacteria and cyanobacteria as cellular organelles. Today, it is widely accepted that during evolution most (pre-)proteins destined for these two organelles were equipped with an N-terminal targeting signal for localization. While multiple modes of evolution of these extensions are currently discussed, all evolved signals serve the same function – forming a signal for targeting to the correct organelle and translocation across both membranes. We aimed to generalize the current idea for the length requirement of the N-terminal extension for efficient translocation. Methods: To explore translocation efficiency in vivo we used protoplasts isolated from different plant sources. We compared the behavior of native and artificial precursor proteins in this plant cell system by fluorescence microscopy. Results: We demonstrate that the minimal length of the N-terminal amino acid stretch in a loosely folded conformation of a precursor of a chloroplast protein is about 60 amino acid residues. This amino acid stretch in a loosely folded state is prerequisite that a preprotein can traverse the outer membrane in vivo. Conclusion: We generalize the evidence that two distinct prerequisites framed the evolutionary process of development of targeting signals for chloroplast translocation. (i) The emerging signal had to be sufficiently distinct to signals existing for targeting to other cellular compartments. (ii) The N-terminal signal had to evolve with physico-chemical properties that serve both purposes: targeting and translocation. With respect to the latter, the length of the unfolded polypeptide is defined by the dimension of the translocon and the resulting distance between the cytosolically exposed receptors acting on the cis side of the membrane and the molecular machinery energizing translocation acting in trans – in the intermembrane space

    Defining the core proteome of the chloroplast envelope membranes

    Get PDF
    High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided

    Structural and functional analysis of the archaeal endonuclease Nob1

    Get PDF
    Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site

    A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase

    Get PDF
    Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the “foot” region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis

    Solute transport in cellular systems

    No full text
    Höhere Eukaryoten stellen ein Ensemble von Zellen dar, die in Kompartimente unterteilt sind. Somit sind intra- und interzelluläre Transportprozesse entscheidend für das Überleben dieser Zellverbände. In meiner Arbeit habe ich Evolution und Struktur von Translokationskomplexen untersucht, um einige Aspekte dieser komplexen Systeme zu untersuchen. Eingangs befassten wir uns mit Rezeptorsystemen am Beispiel des Proteintransports. Mittels phylogenetischer Analysen fanden wir heraus, dass Pex5 nicht der Urahn der anderen untersuchten 3-TPR-Domänen ist, obwohl Pex5 in allen eukaryotischen Organismen vorkommt. Ein Vergleich der 3-TPR-Domänen mit der restlichen Sequenz des Rezeptorproteins ergab, dass die 3-TPR-Domänen eine langsamere Evolutions­geschwindigkeit aufweisen, was für eine Evolutionseinschränkung durch Interaktionspartner spricht. Sec72 ist möglicherweise aus einer TPR1 (Hop) Domäne entstanden und eine Funktion als Hsp70-erkennende Komponente des Sec-Komplexes für den post-translationalen Import kann daraus abgeleitet werden. „Recycling“ von 3-TPR-Domänen anderer Proteine konnten wir durch unsere phylogenetische Analyse auch für die zweite 3-TPR-Domäne von Tom34 nachweisen, die mit CYP40/FKBP51/52 clustert. Darüber hinaus war es uns möglich, die plastidär bzw. mitochondriell lokalisierten Formen von Toc64 phylogenetisch zu unterscheiden. Durch Erzeugung von Homologiemodellen konnten organellspezifische Aminosäuren strukturell eingeordnet werden. Dabei stellten wir fest, dass sich fast alle Positionen, die sich in der Aminosäurekomposition unterscheiden, auf der konvexen Seite der 3-TPR-Domäne befinden. Molekulardynamische Simulationen zeigten zudem deutliche Veränderung der Hauptbewegungen der 3-TPR-Domänen nach Komplexierung mit dem Hsp90-C-Terminus. Bei Bindung des Liganden werden intramolekulare Wasserstoffbrücken sowohl auf der konvexen als auch konkaven Seite der 3-TPR-Domäne „umgeschaltet“. Diese Erkenntnisse führen zu zwei Hypothesen: 1.) die Organellspezifität der Rezeptoren wird durch die Interaktion mit anderen Komplexpartnern garantiert und 2.) die Änderungen des Wasserstoffbrückennetzwerkes auf der konvexen Seite nach Hsp90-Bindung führen zur Ausbildung der Bindungsstelle für die andere Komplexkomponente. Beide Hypothesen erklären die experimentellen Beobachtungen bezüglich der Rezeptoren und warum keine phylogenetischen Hinweise für die Existenz von Vorstufenprotein-spezifischen Hsp70/90-Proteinen gefunden werden konnten. Nach dem Rezeptor haben wir uns mit dem Translokationsprozess befasst. Wir konnten phylogenetisch zeigen, dass sich Omp85 aus Proteobakterien im Vergleich zu Cyanobakterien und Eukaryoten insbesondere durch andersartige POTRA Domänen auszeichnet und fanden zwei konservierte Motive in der Porenregion. Zudem konnten wir im Heterokontophyten P. tricornutum ein vollständiges Omp85 identifizieren (bipartite Signalsequenz, 2 POTRAs, Pore mit langen Schleifen). Die Aminosäuresequenz weicht teils deutlich von den bekannten Omp85-Proteinen ab, was die Entdeckung erschwerte. Wir haben damit geklärt, dass auch im Translokationsapparat von komplexen Plastiden ein b-Fassprotein der Omp85 Familie die Kerneinheit bildet. Ebenfalls zu den Protein-transportierenden b-Fassproteinen gehört TolC, das aber im Gegensatz zu Omp85 auch andere Substanzen, wie zum Beispiel Siderophore transportiert. Alr2887 ist das einzige TolC-ähnliche Protein aus Anabaena sp. PCC7120. Vergleichende Phänotypuntersuchungen weisen auf eine Interaktion eines ABC-Transporters (DevBCA Operon) mit Alr2887 hin. Die Distanz zwischen äußerer Membran und Plasmamembran ist in Anabaena doppelt so groß wie in E. coli. Entsprechend fanden wir im Adapterprotein DevB eine stark verlängerte dimere Doppelwendel, die das von TolC gebildete a-Fass im Periplasma bis hin zum ABC-Transporter in der Plasmamembran theoretisch fortsetzen kann. Da verschiedenste in Anabaena existierende ABC-Transporter TolC als Abflusskanal benötigen, nehmen wir an, dass Alr2887 ein Rundumtalent in Bezug auf die zu transportierenden Substrate darstellt. Dieses ist auch aufgrund der basalen Einordnung im phylogenetischen Baum zu vermuten; es könnte somit auch in den „Multi-Drug-Efflux“ involviert sein. Nicht nur ABC-Transporter, auch TonB-abhängige Transporter stehen in funktionellem Zusammenhang mit TolC. Wir haben Aminosäuresequenzen von ~4600 TBDTs aus Gram-negativen Bakterien und Cyanobakterien zusammengetragen und nach ihrer paarweisen Ähnlichkeit geclustert. Anhand experimentell charakterisierter TBDTs mit bekannten Substraten und TBDTs mit vorhergesagten Substraten konnten wir sehr vielen Clustern ein Substrat zuordnen, das die in ihnen zusammengefassten TBDTs aller Wahrscheinlichkeit nach importieren. Wir konnten ferner feststellen, dass es noch eine Menge weiterer Cluster mit unbekannten Substratspezifitäten gibt und unsere Analysen stimulieren somit die Arbeiten an diesem System im Allgemeinen und in Cyanobakterien im Besonderen

    The Influence of Fatty Acids on the GpA Dimer Interface by Coarse-Grained Molecular Dynamics Simulation

    No full text
    The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA
    corecore