1,301 research outputs found
Developing a logical model of yeast metabolism
With the completion of the sequencing of genomes of increasing numbers of organisms, the focus of biology is moving to determining the role of these genes (functional
genomics). To this end it is useful to view the cell as a
biochemical machine: it consumes simple molecules to manufacture more complex ones by chaining together biochemical reactions into long sequences referred to as em metabolic pathways. Such metabolic pathways are not
linear but often interesect to form complex networks. Genes play a fundamental role in these networks by providing the information to synthesise the enzymes that catalyse biochemical reactions. Although developing a complete model of metabolism is of fundamental importance to biology and medicine, the size and complexity of the network has proven beyond the capacity of human reasoning. This paper presents the first results of the Robot Scientist research programme that aims to automatically discover the function of genes in the metabolism of the yeast em Saccharomyces cerevisiae. Results include: (1) the first logical model of metabolism;(2) a method to predict phenotype by deductive inference; and (3) a method to infer reactions and gene function by aductive inference. We describe the em in vivo experimental set-up which will allow these em in silico predictions to be automatically tested by a laboratory robot
Combining inductive logic programming, active learning and robotics to discover the function of genes
The paper is addressed to AI workers with an interest in biomolecular genetics and also to biomolecular geneticists interested in what AI tools may do for them. The authors are engaged in a collaborative enterprise aimed at partially automating some aspects of scientific work. These aspects include the processes of forming hypotheses, devising trials to discriminate between these competing hypotheses, physically performing these trials and then using the results of these trials to converge upon an accurate hypothesis. As a potential component of the reasoning carried out by an "artificial scientist" this paper describes ASE-Progol, an Active Learning system which uses Inductive Logic Programming to construct hypothesised first-order theories and uses a CART-like algorithm to select trials for eliminating ILP derived hypotheses. In simulated yeast growth tests ASE-Progol was used to rediscover how genes participate in the aromatic amino acid pathway of Saccharomyces cerevisiae. The cost of the chemicals consumed in converging upon a hypothesis with an accuracy of around 88% was reduced by five orders of magnitude when trials were selected by ASE-Progol rather than being sampled at random. While the naive strategy of always choosing the cheapest trial from the set of candidate trials led to lower cumulative costs than ASE-Progol, both the naive strategy and the random strategy took significantly longer to converge upon a final hypothesis than ASE-Progol. For example to reach an accuracy of 80%, ASE-Progol required 4 days while random sampling required 6 days and the naive strategy required 10 days
Dating of the oldest continental sediments from the Himalayan foreland basin
A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated
Rationale and protocol for the After Diabetes Diagnosis REsearch Support System (ADDRESS): an incident and high risk type 1 diabetes UK cohort study
INTRODUCTION: Type 1 diabetes is heterogeneous in its presentation and progression. Variations in clinical presentation between children and adults, and with ethnic group warrant further study in the UK to improve understanding of this heterogeneity. Early interventions to limit beta cell damage in type 1 diabetes are undergoing evaluation, but recruitment is challenging. The protocol presented describes recruitment of people with clinician-assigned, new-onset type 1 diabetes to understand the variation in their manner of clinical presentation, to facilitate recruitment into intervention studies and to create an open-access resource of data and biological samples for future type 1 diabetes research. METHODS AND ANALYSIS: Using the National Institute for Health Research Clinical Research Network, patients >5 years of age diagnosed clinically with type 1 diabetes (and their siblings) are recruited within 6 months of diagnosis. Participants agree to have their clinical, laboratory and demographic data stored on a secure database, for their clinical progress to be monitored using information held by NHS Digital, and to be contacted about additional research, in particular immunotherapy and other interventions. An optional blood sample is taken for islet autoantibody measurement and storage of blood and DNA for future analyses. Data will be analysed statistically to describe the presentation of incident type 1 diabetes in a contemporary UK population. ETHICS AND DISSEMINATION: Ethical approval was obtained from the independent NHS Research Ethics Service. Results will be presented at national and international meetings and submitted for publication to peer-reviewed journals.This work was supported by Diabetes UK grant number 09/0003919 and the Juvenile Diabetes Research Foundation grant number 9-2010-407. Recruitment is supported by staff at the National Institute for Health Research Clinical Research Network
Identifying key influences on antibiotic use in China: a systematic scoping review and narrative synthesis
INTRODUCTION: The inappropriate use of antibiotics is a key driver of antimicrobial resistance. In China, antibiotic prescribing and consumption exceed recommended levels and are relatively high internationally. Understanding the influences on antibiotic use is essential to informing effective evidence-based interventions. We conducted a scoping review to obtain an overview of empirical research about key behavioural, cultural, economic and social influences on antibiotic use in China. METHODS: Searches were conducted in Econlit, Medline, PsycINFO, Social Science citation index and the Cochrane Database of Systematic Reviews for the period 2003 to early 2018. All study types were eligible including observational and intervention, qualitative and quantitative designs based in community and clinical settings. Two authors independently screened studies for inclusion. A data extraction form was developed incorporating details on study design, behaviour related to antibiotic use, influences on behaviour and information on effect (intervention studies only). RESULTS: Intervention studies increased markedly from 2014, and largely focused on the impact of national policy and practice directives on antibiotic use in secondary and tertiary healthcare contexts in China. Most studies used pragmatic designs, such as before and after comparisons. Influences on antibiotic use clustered under four themes: antibiotic prescribing; adherence to antibiotics; self-medicating behaviour and over-the-counter sale of antibiotics. Many studies highlighted the use of antibiotics without a prescription for common infections, which was facilitated by availability of left-over medicines and procurement from local pharmacies. CONCLUSIONS: Interventions aimed at modifying antibiotic prescribing behaviour show evidence of positive impact, but further research using more robust research designs, such as randomised trials, and incorporating process evaluations is required to better assess outcomes. The effect of national policy at the primary healthcare level needs to be evaluated and further exploration of the influences on antibiotic self-medicating is required to develop interventions that tackle this behaviour
Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.)
<p>Abstract</p> <p>Background</p> <p>To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene <it>Vrn-A1 </it>was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined.</p> <p>Results</p> <p>Analysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at <it>p </it>< 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the gene's response to cold. We show that the <it>Vrn-A1 </it>locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that <it>Ta.Vrn-A1 </it>and <it>Ta.Vrt1 </it>originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct.</p> <p>Conclusion</p> <p>This study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.</p
Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm
Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism
The dusty SF history of high-z galaxies, modelling tools and future prospects
We summarize recent advances in the determination of the cosmic history of star formation and other properties of high-z galaxies, and the relevance of this information in our understanding of the formation of structures. We emphasize the importance of dust reprocessing in the high--z universe, as demonstrated in particular by IR and sub-mm data. This demand a panchromatic approach to observations and suitable modelling tools. We spend also some words on expectations from future instruments
Parental attributions of control for child behaviour and their relation to discipline practices in parents of children with and without developmental delays
Children with developmental delays (DD) are at risk for developing behavior problems. Research suggests that parents’ causal attributions for child behavior are related to parenting. This study investigated this association in parents of children with DD compared to parents of typically developing (TD) children. It specifically focused on attributions of child control by separating these from attributions of responsibility, blame and intent, and from attributions of parent control and responsibility. Fifty-one parents of children with DD and 69 parents of TD children completed two questionnaires. The Written Analogue Questionnaire measured causal attributions. The Parenting Scale measured dysfunctional discipline practices. Parents of children with DD viewed the child’s role in problematic behavior more positively while also viewing misbehavior as more fixed than parents of TD children. Parents of TD children who viewed their child as more in control over misbehavior used less dysfunctional discipline, but this association was not found for parents of children with DD. The results advance understanding of how parents perceive behavior problems in children with DD and the important role these perceptions play in parental behavior management strategies. More importantly, these perceptions relate to discipline practices differently for parents of children with DD compared to parents of TD children, highlighting that parent interventions should be adapted to the specific needs of parents of children with DD
- …