3,382 research outputs found
Multidisciplinary Design of Transonic Fans for Civil Aeroengines
For current state-of-the-art turbofan engines the bypass section of the fan stage alone provides the majority of the total thrust in cruise and the size of the fan has a considerable effect on overall engine weight and nacelle drag. Thrust requirements in different parts of the flight envelope must also be satisfied together with sufficient margins towards stall. A complex set of system requirements and objectives, combined with component technology of high maturity level, demands performance predictions with higher accuracy that are sensitive to more detailed design features at an early conceptual design phase. Failing to meet these demands may result in a sub-optimal choice of aircraft-engine system architecture.The emphasise of this thesis work is on fan-stage design and performance prediction in terms of aerodynamic efficiency and stability. The aspect of accuracy when it comes to establishing engine cycle performance for existing state-of-the-art technology based on open literature data is undertaken in the first paper. In the second paper a strategy to expand the parameter interdependencies of a fan-stage performance model with a multidisciplinary perspective is explored. The resulting model is integrated into an engine systems model and coupled with a simplified weight model to investigate the trade-off between weight and specifc fuel consumption. Results implied that being able to predict the rotor solidity required to maintain a given average blade loading - in addition to stage efficiency - is of high importance
Biomass smoke exposure enhances rhinovirus-induced inflammation in primary lung fibroblasts
© 2016 by the authors; licensee MDPI, Basel, Switzerland. Biomass smoke is one of the majorair pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases inflammation in the lungs can be targeted and inhibited via p38 MAP kinase pathway
Evidence of biomass smoke exposure as a causative factor for the development of COPD
© 2017 by the authors. Chronic obstructive pulmonary disease (COPD) is a progressive disease of the lungs characterised by chronic inflammation, obstruction of airways, and destruction of the parenchyma (emphysema). These changes gradually impair lung function and prevent normal breathing. In 2002, COPD was the fifth leading cause of death, and is estimated by theWorld Health Organisation (WHO) to become the third by 2020. Cigarette smokers are thought to be the most at risk of developing COPD. However, recent studies have shown that people with life-long exposure to biomass smoke are also at high risk of developing COPD. Most common in developing countries, biomass fuels such as wood and coal are used for cooking and heating indoors on a daily basis. Women and children have the highest amounts of exposures and are therefore more likely to develop the disease. Despite epidemiological studies providing evidence of the causative relationship between biomass smoke and COPD, there are still limited mechanistic studies on how biomass smoke causes, and contributes to the progression of COPD. This review will focus upon why biomass fuels are used, and their relationship to COPD. It will also suggest methodological approaches to model biomass exposure in vitro and in vivo
Metal Painting by Plasma Jet
Conducting metal interconnections are essential to link electronic components or multiple circuits for electronic device fabrication. Scalable, rapid, and sustainable methods for printing adherent metal interconnections on dielectric materials are lacking, which stifles the development of new electronic consumer devices. Here a breakthrough single-step and rapid process to deposit highly conducting metal tracks is introduced, using an atmospheric pressure plasma jet. The deposition process used a rudimentary aqueous solution of metal salts as ink, that was introduced as a mist into a helium plasma gas. The metal salt was reduced and deposited with spatiotemporal control using a plasma jet generated at radio frequency with 15 W power at room temperature and pressure. The conductive metal layers were highly adhesive on glass, ceramics, polymeric materials, even biological surfaces such as plant leaves and animal skin, depostedwith little damage to the substrate. The conductivity of deposited tracks on glass shows 50.8 ± 8.6% and 5.2 ± 1.6% of bulk silver and copper metal conductivity respectively
Effects on the maternofetal unit of the rabbit model after substitution of the amniotic fluid with perfluorocarbons
Objectives: Exchanging amniotic fluid (AF) with perfluorocarbon (PFC) may serve as a medium for fetoscopic surgery. This study evaluates the distribution and physiologic effects of intraamniotic PFC as a medium for fetoscopy. Methods: Fetuses of 17 pregnant rabbits underwent either exchange of the AF with PFC, electrolyte solution (ES), or control. The quality of vision during fetoscopy was assessed in AF and PFC. After 6 h, we determined the distribution of PFC in the maternofetal unit. Results: Quality of vision during fetoscopy was better in PFC than with AF. There was no difference in fetal survival between the study groups. PFC was demonstrated on X-ray in the pharynx of 4 fetuses, and the esophagus in 1. Conclusions: PFC provided an ideal medium for fetoscopy without fetal compromise. Copyright (c) 2005 S. Karger AG, Basel
Survey of the rate of PSA testing in general practice
The use of prostate specific antigen (PSA) test could have a large impact on the incidence of prostate cancer in the UK. Over a period of 1 year (1999), 3.5% out of 160 015 men aged > 45 on a GP database, who had no previous record of prostate cancer, had a PSA test. Of the tested men, 21.3% had a PSA > 4 ng/ml. Future data need to distinguish between men with and without symptoms. © 2001 Cancer Research Campaign http://www.bjcancer.co
Evolutionary Reduction of the First Thoracic Limb in Butterflies
Members of the diverse butterfly families Nymphalidae (brush-footed butterflies) and Riodinidae (metalmarks) have reduced first thoracic limbs and only use two pairs of legs for walking. In order to address questions about the detailed morphology and evolutionary origins of these reduced limbs, the three thoracic limbs of 13 species of butterflies representing all six butterfly families were examined and measured, and ancestral limb sizes were reconstructed for males and females separately. Differences in limb size across butterflies involve changes in limb segment size rather than number of limb segments. Reduction of the first limb in both nymphalids and riodinids appears particularly extensive in the femur, but the evolution of these reduced limbs is suggested to be a convergent evolutionary event. Possible developmental differences as well as ecological factors driving the evolution of reduced limbs are discussed
Correction: Rapid single step atmospheric pressure plasma jet deposition of a SERS active surface
Correction for ‘Rapid single step atmospheric pressure plasma jet deposition of a SERS active surface’ by Oliver S. J. Hagger et al., Mater. Adv., 2023, 4, 3239–3245, https://doi.org/10.1039/D3MA00249G.
The authors regret that in the Results and discussion section, the particle sizes for PSNP and PDS particles were given in reversed order. The correct particle sizes should be as follows:
On average, through analysis of SEM images, PSNP and PDS particles are 51 ± 24 nm, and 42 ± 12 nm in size, respectively, whereas the commercial substrates OI and SS are 242 ± 58 nm and 133 ± 32 nm in size.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers
- …