192 research outputs found

    Ancient high-energy storm boulder deposits on Ko Samui, Thailand, and their significance for identifying coastal hazard risk

    Get PDF
    © 2016 Elsevier B.V. Coastal geomorphic processes associated with high-energy storm events are difficult to estimate over recent geological history, though their frequency and magnitude are important to assess in order to understand present-day coastal vulnerability. Studying ancient coastal boulder deposits can shed light on the previous physical conditions necessary for their deposition. In this study, we estimated the physical processes required to move reef-derived coral boulders on the east coast of Ko Samui, a rapidly developing tourist island off eastern peninsular Thailand. The position and dimensions of 97 coral boulders (weight: mean 2.9. t, max. 12.7. t; transport distance: max. 125. m) were measured at two sites and dated using uranium/thorium methods. Flow velocities of 2.3-8.6. m/s were required to transport the measured boulders, with individuals deposited up to 4.7. m above mean sea level. Age-dating suggests that events capable of the highest flow velocities occurred around AD 1600 and AD 1750. These were probably driven by tropical cyclones (typhoons). Boulder transport by events of similar magnitude has not been detected within the last 250. years. The non-occurrence of similar events in living memory has implications for hazard perceptions at this important tourist destination. However, there is also evidence of substantial Holocene sea-level changes in the Gulf of Thailand, as observed at nearby Ko Phaluai. This potentially offers a challenge for the interpretation of older boulders dating from the mid-Holocene, as sea level may have been more than 2. m higher than present. Thus, studies using coral boulders as a proxy for past storm-wave conditions must consider the broader sea-level history, and are probably best limited to the period post-2000. BP in the Gulf of Thailand

    Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints

    No full text
    A range of ages have been proposed for the timing of India-Asia collision; the range to some extent reflects different definitions of collision and methods used to date it. In this paper we discuss three approaches that have been used to constrain the time of collision: the time of cessation of marine facies, the time of the first arrival of Asian detritus on the Indian plate, and the determination of the relative positions of India and Asia through time. In the Qumiba sedimentary section located south of the Yarlung Tsangpo suture in Tibet, a previous work has dated marine facies at middle to late Eocene, by far the youngest marine sediments recorded in the region. By contrast, our biostratigraphic data indicate the youngest marine facies preserved at this locality are 50.6–52.8 Ma, in broad agreement with the timing of cessation of marine facies elsewhere throughout the region. Double dating of detrital zircons from this formation, by U-Pb and fission track methods, indicates an Asian contribution to the rocks thus documenting the time of arrival of Asian material onto the Indian plate at this time and hence constraining the time of India-Asia collision. Our reconstruction of the positions of India and Asia by using a compilation of published palaeomagnetic data indicates initial contact between the continents in the early Eocene. We conclude the paper with a discussion on the viability of a recent assertion that collision between India and Asia could not have occurred prior to ∼35 Ma

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated

    Large rivers and orogens: the evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis

    Get PDF
    The eastern Himalayan syntaxis has experienced some of the highest rates of deformation and erosion in the orogen during the Late Cenozoic, and the Yarlung Tsangpo, Brahmaputra, Irrawaddy, Salween, and Mekong rivers are the key erosional systems in that region. The Yarlung Tsangpo drains southern Tibet and the deep Siang River gorge through the eastern Himalayan syntaxis before joining the Brahmaputra in northeastern India. It has been proposed that the Yarlung Tsangpo drained into other large rivers of southern Asia, such as the Irrawaddy, Salween and Red River. We have used uranium/lead dating and hafnium measurements of detrital zircons from Cenozoic sedimentary deposits in Central Myanmar to demonstrate that the Yarlung Tsangpo formerly drained into the Irrawaddy River in Myanmar through the eastern syntaxis, and that this ancient river system was established by (at least) the Middle–Late Eocene. The Yarlung Tsangpo–Irrawaddy river disconnected in the Early Miocene driven by increased deformation in the eastern syntaxis and headward erosion by tributaries of the Brahmaputra. Our results highlight the significance of the sedimentary record of large orogen-parallel rivers and provide key chronological constraints on landscape evolution during the Early Miocene phase of the Himalayan orogeny

    Mouse and human genetic analyses associate kalirin with ventral striatal activation during impulsivity and with alcohol misuse

    Get PDF
    Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behaviour in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI) mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioural data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org), to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of <0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologues of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol experience. There was a significant overall association between the human homologues of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS) during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major) of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor) of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking

    Outcomes of cinacalcet withdrawal in Australian dialysis patients

    Get PDF
    Background: Secondary hyperparathyroidism (SHPT) in chronic kidney disease is associated with cardiovascular and bone pathology. Measures to achieve parathyroid hormone (PTH) target values and control biochemical abnormalities associated with SHPT require complex therapies, and severe SHPT often requires parathyroidectomy or the calcimimetic cinacalcet. In Australia, cinacalcet was publicly funded for dialysis patients from 2009 to 2015 when funding was withdrawn following publication of the EVOLVE study, which resulted in most patients on cinacalcet ceasing therapy. We examined the clinical and biochemical outcomes associated with this change at Australian renal centres. Methods: We conducted a retrospective study of dialysis patients who ceased cinacalcet after August 2015 in 11 Australian units. Clinical outcomes and changes in biochemical parameters were assessed over a 24‐ and 12‐month period respectively from cessation of cinacalcet. Results: 228 patients were included (17.7% of all dialysis patients from the units). Patients were aged 63±15 years with 182 patients on haemodialysis and 46 on peritoneal dialysis. Over 24 months following cessation of cinacalcet, we observed 26 parathyroidectomies, 3 episodes of calciphylaxis, 8 fractures and 50 deaths. Seven patients recommenced cinacalcet, meeting criteria under a special access scheme. Biochemical changes from baseline to 12 months after cessation included increased levels of serum PTH from 54 (IQR 27‐90) pmol/L to 85 (IQR 41‐139) pmol/L (

    Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions

    Get PDF
    Background: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from groundbased monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. Results: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Conclusions: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities

    Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.

    Get PDF
    Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD
    corecore