1,716 research outputs found
Presence of Enterobacteriaceae and Clostridiaceae in thte soil according to the use of biofertilizers of feces from goats and sheep.
The use of biofertilizers appears as an alternative to the use of chemical fertilizers and use of residues generated by animal production. However, the presence of possible pathogens belonging to the families Enterobacteriaceae and Clostridiaceae in biofertilizers from feces can lead to sanitary and ecological problems
FABP1 and SLC2A5 expression levels affect feed efficiency-related traits.
Improving the efficiency of production to reduce the environmental footprints is pivotal to the sustainability of livestock systems. Despite the advances in cattle feed efficiency (FE) measurement and identification of potential mechanisms involved, much is still unclear regarding the genetic and biological basis of this trait. Nevertheless, lipid and carbohydrate metabolism have been outlined as important in determining efficient and inefficient animals. To address the role of genes partaking in these processes and previously involved with residual feed intake (RFI), we carried out a liver expression profile in Nelore steers (n = 83). Six target genes (FABP1, FADS2, PPP1R26, RGS2, SLC2A5, and UCP2) were measured by qPCR analysis. A general linear mixed model approach was applied to associate them with dry matter intake (DMI), body weight (BW), metabolic BW (MBW, kg), DMI as a percentage of BW (DMI%BW), and average daily gain (ADG, kg/d). Residual feed intake (RFI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), and relative growth rate (RGR) were also evaluated. Our results support that increased expression of FABP1 gene was associated with enhanced values for RFI and DMI. Likewise, higher expression level of SLC2A5 was related to higher KI and RGR. There was no phenotypic correlation between RFI and ADG, BW, and MBW. The positive correlations between FABP1 and SLC2A5, and between FABP1 and FADS2 gene expression suggest a putative co-regulation affecting feed efficiency phenotypes
Variations in Amazonian forest canopy structure and light environments across environmental and disturbance gradients.
A critical problem in tropical forest ecology is understanding how vegetation structure and function vary over environmental gradients. The degree to which forest structure changes across the Amazon basin and the role of environmental variability in shaping forest structure and dynamics are poorly characterised, despite the importance of these forests for regional and global climate. To address these challenges, we connected 10 years of investigations to amass a large database of ground-based profiling canopy lidar (PCL) data from 297 Amazon forest plots across large-scale environmental and disturbance gradients. Mean annual precipitation varied from 1,963 to 3,159 mm, number of dry season months from 0 to 5, and plot soil types covered about half of the variation in phosphorus, exchangeable cation, and soil physical property values observed in Amazonia. We quantified detailed metrics of vertical and horizontal structure and canopy light environments. Forest structure varied considerably across plots; maximum canopy height ranged from 6.1 to 35.7 m, gap fraction from 0.00 to 0.36, LAI from 0.5 to 7.3, rugosity from 1.5 to 7.5 m, and the relative height of 50% light transmission from 0.3 to 0.8. Disturbed sites exhibited almost twice the level of variation (SD) to non-disturbed sites for many metrics. Vertical leaf area density (LAD) profiles also showed high between plot variability, especially at low and high relative canopy heights. Plots with similar LAD profiles sometimes exhibited different distributions of ?canopy photic environment layers??where canopy leaf area is separated into photic environment layers by depth from canopy surface. This demonstrates that LAD profiles alone are insufficient for characterising canopy environments, essential to light-driven regeneration and carbon cycle processes. In addition, we evaluated relationships between lidar metrics and environmental variables extracted from geospatial layers. Our dataset allows a unique and detailed multi-site analysis of canopy structure and environments across the Amazon, including regions with little or no lidar sampling. Examining how structural attributes alter across environmental gradients is critical to understanding how current and future climate influences Amazonian forest structure, function, and dynamics.Paper 499657
Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
- …