36,802 research outputs found

    Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models

    Get PDF
    We exhibit a resonance mechanism of amplification of density perturbations in inflationary mo-dels, using a minimal set of ingredients (an effective cosmological constant, a scalar field minimally coupled to the gravitational field and matter), common to most models in the literature of inflation. This mechanism is based on the structure of homoclinic cylinders, emanating from an unstable periodic orbit in the neighborhood of a saddle-center critical point, present in the phase space of the model. The cylindrical structure induces oscillatory motions of the scales of the universe whenever the orbit visits the neighborhood of the saddle-center, before the universe enters a period of exponential expansion. The oscillations of the scale functions produce, by a resonance mechanism, the amplification of a selected wave number spectrum of density perturbations, and can explain the hierarchy of scales observed in the actual universe. The transversal crossings of the homoclinic cylinders induce chaos in the dynamics of the model, a fact intimately connected to the resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.

    On Galois-Division Multiple Access Systems: Figures of Merit and Performance Evaluation

    Full text link
    A new approach to multiple access based on finite field transforms is investigated. These schemes, termed Galois-Division Multiple Access (GDMA), offer compact bandwidth requirements. A new digital transform, the Finite Field Hartley Transform (FFHT) requires to deal with fields of characteristic p, p \neq 2. A binary-to-p-ary (p \neq 2) mapping based on the opportunistic secondary channel is introduced. This allows the use of GDMA in conjunction with available digital systems. The performance of GDMA is also evaluated.Comment: 6 pages, 4 figures. In: XIX Simposio Brasileiro de Telecomunicacoes, 2001, Fortaleza, CE, Brazi

    Broad Histogram Monte Carlo

    Full text link
    We propose a new Monte Carlo technique in which the degeneracy of energy states is obtained with a Markovian process analogous to that of Metropolis used currently in canonical simulations. The obtained histograms are much broader than those of the canonical histogram technique studied by Ferrenberg and Swendsen. Thus we can reliably reconstruct thermodynamic functions over a much larger temperature scale also away from the critical point. We show for the two-dimensional Ising model how our new method reproduces exact results more accurately and using less computer time than the conventional histogram method. We also show data in three dimensions for the Ising ferromagnet and the Edwards Anderson spin glass.Comment: 6 pages of a TeX file with 4 PS figures. Related papers at http://www.if.uff.br/~tjp

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm

    Full text link
    Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the existence of the magnetic ordering belonging to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral ordering which occurs at slightly higher temperature. We also observe the lower temperature phase transition of KT type due to the discrete symmetry of the clock model. By using finite-size scaling analysis, the higher KT temperature T2T_2 and the chiral critical temperature TcT_c are respectively estimated as T2=0.5154(8)T_2=0.5154(8) and Tc=0.5194(4)T_c=0.5194(4). The results are in favor of the double transition scenario. The lower KT temperature is estimated as T1=0.496(2)T_1=0.496(2). Two decay exponents of KT transitions corresponding to higher and lower temperatures are respectively estimated as η2=0.25(1)\eta_2=0.25(1) and η1=0.13(1)\eta_1=0.13(1), which suggests that the exponents associated with the KT transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.
    • …
    corecore