32,324 research outputs found
Self-Similar Collapse of Scalar Field in Higher Dimensions
This paper constructs continuously self-similar solution of a spherically
symmetric gravitational collapse of a scalar field in n dimensions. The
qualitative behavior of these solutions is explained, and closed-form answers
are provided where possible. Equivalence of scalar field couplings is used to
show a way to generalize minimally coupled scalar field solutions to the model
with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde
Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm
Monte Carlo simulations using the newly proposed Wang-Landau algorithm
together with the broad histogram relation are performed to study the
antiferromagnetic six-state clock model on the triangular lattice, which is
fully frustrated. We confirm the existence of the magnetic ordering belonging
to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral
ordering which occurs at slightly higher temperature. We also observe the lower
temperature phase transition of KT type due to the discrete symmetry of the
clock model. By using finite-size scaling analysis, the higher KT temperature
and the chiral critical temperature are respectively estimated as
and . The results are in favor of the double
transition scenario. The lower KT temperature is estimated as .
Two decay exponents of KT transitions corresponding to higher and lower
temperatures are respectively estimated as and
, which suggests that the exponents associated with the KT
transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.
Iron oxide doped boron nitride nanotubes: structural and magnetic properties
A first-principles formalism is employed to investigate the interaction of
iron oxide (FeO) with a boron nitride (BN) nanotube. The stable structure of
the FeO-nanotube has Fe atoms binding N atoms, with bond length of roughly
2.1 \AA, and binding between O and B atoms, with bond length of 1.55 \AA.
In case of small FeO concentrations, the total magnetic moment is
(4) times the number of Fe atoms in the unit cell and it is
energetically favorable to FeO units to aggregate rather than randomly bind to
the tube. As a larger FeO concentration case, we study a BN nanotube fully
covered by a single layer of FeO. We found that such a structure has square FeO
lattice with Fe-O bond length of 2.11 \AA, similar to that of FeO bulk, and
total magnetic moment of 3.94 per Fe atom. Consistently with
experimental results, the FeO covered nanotube is a semi-half-metal which can
become a half-metal if a small change in the Fermi level is induced. Such a
structure may be important in the spintronics context.Comment: 10 pages, 3 figure
Ramsey numbers and adiabatic quantum computing
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In
fact, for the two-color Ramsey numbers with , only nine are
currently known. We present a quantum algorithm for the computation of the
Ramsey numbers . We show how the computation of can be mapped
to a combinatorial optimization problem whose solution can be found using
adiabatic quantum evolution. We numerically simulate this adiabatic quantum
algorithm and show that it correctly determines the Ramsey numbers R(3,3) and
R(2,s) for . We then discuss the algorithm's experimental
implementation, and close by showing that Ramsey number computation belongs to
the quantum complexity class QMA.Comment: 4 pages, 1 table, no figures, published versio
Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3
We present a study of the effect of very high pressure on the orthorhombic
perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to
53.2 GPa. The experimental results yield a structural and insulator-to-metal
phase transition close to 50 GPa, from an orthorhombic to a metrically cubic
structure. The phase transition is of first order with a pressure hysteresis of
about 6 GPa. The observed behavior under very high pressure might well be a
general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table
- …