32,324 research outputs found

    Self-Similar Collapse of Scalar Field in Higher Dimensions

    Get PDF
    This paper constructs continuously self-similar solution of a spherically symmetric gravitational collapse of a scalar field in n dimensions. The qualitative behavior of these solutions is explained, and closed-form answers are provided where possible. Equivalence of scalar field couplings is used to show a way to generalize minimally coupled scalar field solutions to the model with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde

    Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm

    Full text link
    Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the existence of the magnetic ordering belonging to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral ordering which occurs at slightly higher temperature. We also observe the lower temperature phase transition of KT type due to the discrete symmetry of the clock model. By using finite-size scaling analysis, the higher KT temperature T2T_2 and the chiral critical temperature TcT_c are respectively estimated as T2=0.5154(8)T_2=0.5154(8) and Tc=0.5194(4)T_c=0.5194(4). The results are in favor of the double transition scenario. The lower KT temperature is estimated as T1=0.496(2)T_1=0.496(2). Two decay exponents of KT transitions corresponding to higher and lower temperatures are respectively estimated as η2=0.25(1)\eta_2=0.25(1) and η1=0.13(1)\eta_1=0.13(1), which suggests that the exponents associated with the KT transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    Iron oxide doped boron nitride nanotubes: structural and magnetic properties

    Full text link
    A first-principles formalism is employed to investigate the interaction of iron oxide (FeO) with a boron nitride (BN) nanotube. The stable structure of the FeO-nanotube has Fe atoms binding N atoms, with bond length of roughly ∼\sim2.1 \AA, and binding between O and B atoms, with bond length of 1.55 \AA. In case of small FeO concentrations, the total magnetic moment is (4μBohr\mu_{Bohr}) times the number of Fe atoms in the unit cell and it is energetically favorable to FeO units to aggregate rather than randomly bind to the tube. As a larger FeO concentration case, we study a BN nanotube fully covered by a single layer of FeO. We found that such a structure has square FeO lattice with Fe-O bond length of 2.11 \AA, similar to that of FeO bulk, and total magnetic moment of 3.94μBohr\mu_{Bohr} per Fe atom. Consistently with experimental results, the FeO covered nanotube is a semi-half-metal which can become a half-metal if a small change in the Fermi level is induced. Such a structure may be important in the spintronics context.Comment: 10 pages, 3 figure

    Ramsey numbers and adiabatic quantum computing

    Full text link
    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n)R(m,n) with m,n≥3m,n\geq 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n)R(m,n). We show how the computation of R(m,n)R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤75\leq s\leq 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.Comment: 4 pages, 1 table, no figures, published versio

    Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3

    Full text link
    We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition close to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table
    • …
    corecore