32,953 research outputs found

    Mapping the train model for earthquakes onto the stochastic sandpile model

    Full text link
    We perform a computational study of a variant of the ``train'' model for earthquakes [PRA 46, 6288 (1992)], where we assume a static friction that is a stochastic function of position rather than being velocity dependent. The model consists of an array of blocks coupled by springs, with the forces between neighbouring blocks balanced by static friction. We calculate the probability, P(s), of the occurrence of avalanches with a size s or greater, finding that our results are consistent with the phenomenology and also with previous models which exhibit a power law over a wide range. We show that the train model may be mapped onto a stochastic sandpile model and study a variant of the latter for non-spherical grains. We show that, in this case, the model has critical behaviour only for grains with large aspect ratio, as was already shown in experiments with real ricepiles. We also demonstrate a way to introduce randomness in a physically motivated manner into the model.Comment: 14 pages and 6 figures. Accepted in European Physical Journal

    Estimativa do custo de produção de café agroecológico no Município de Alto Paraíso - Rondônia.

    Get PDF
    Considerando a necessidade de se gerar informações socioeconômicas que contribuam para o delineamento de agroecossistemas sustentáveis, objetivo deste trabalho é a determinação do custo de produção do café robusta em sistema agroecológico no Município de Alto Paraíso, Rondônia. Pretende-se ainda determinar a renda auferida por uma unidade de produção típica do sistema café-mel-madeira.bitstream/item/24715/1/cot317-cafeagroecologico.pd

    Analytical results for long time behavior in anomalous diffusion

    Full text link
    We investigate through a Generalized Langevin formalism the phenomenon of anomalous diffusion for asymptotic times, and we generalized the concept of the diffusion exponent. A method is proposed to obtain the diffusion coefficient analytically through the introduction of a time scaling factor λ\lambda. We obtain as well an exact expression for λ\lambda for all kinds of diffusion. Moreover, we show that λ\lambda is a universal parameter determined by the diffusion exponent. The results are then compared with numerical calculations and very good agreement is observed. The method is general and may be applied to many types of stochastic problem

    The contact process in disordered and periodic binary two-dimensional lattices

    Full text link
    The critical behavior of the contact process in disordered and periodic binary 2d-lattices is investigated numerically by means of Monte Carlo simulations as well as via an analytical approximation and standard mean field theory. Phase-separation lines calculated numerically are found to agree well with analytical predictions around the homogeneous point. For the disordered case, values of static scaling exponents obtained via quasi-stationary simulations are found to change with disorder strength. In particular, the finite-size scaling exponent of the density of infected sites approaches a value consistent with the existence of an infinite-randomness fixed point as conjectured before for the 2d disordered CP. At the same time, both dynamical and static scaling exponents are found to coincide with the values established for the homogeneous case thus confirming that the contact process in a heterogeneous environment belongs to the directed percolation universality class.Comment: submitted to Physical Review
    corecore