8 research outputs found
BBN For Pedestrians
The simplest, `standard' model of Big Bang Nucleosynthesis (SBBN) assumes
three light neutrinos (N_nu = 3) and no significant electron neutrino
asymmetry, leaving only one adjustable parameter: the baryon to photon ratio
eta. The primordial abundance of any one nuclide can, therefore, be used to
measure the baryon abundance and the value derived from the observationally
inferred primordial abundance of deuterium closely matches that from current,
non-BBN data, primarily from the WMAP survey. However, using this same estimate
there is a tension between the SBBN-predicted 4He and 7Li abundances and their
current, observationally inferred primordial abundances, suggesting that N_nu
may differ from the standard model value of three and/or that there may be a
non-zero neutral lepton asymmetry (or, that systematic errors in the abundance
determinations have been underestimated or overlooked). The differences are not
large and the allowed ranges of the BBN parameters permitted by the data are
quite small. Within these ranges, the BBN-predicted abundances of D, 3He, 4He,
and 7Li are very smooth, monotonic functions of eta, N_nu, and the lepton
asymmetry. It is possible to describe the dependencies of these abundances (or
powers of them) upon the three parameters by simple, linear fits which, over
their ranges of applicability, are accurate to a few percent or better. The
fits presented here have not been maximized for their accuracy but, for their
simplicity. To identify the ranges of applicability and relative accuracies,
they are compared to detailed BBN calculations; their utility is illustrated
with several examples. Given the tension within BBN, these fits should prove
useful in facilitating studies of the viability of proposals for non-standard
physics and cosmology, prior to undertaking detailed BBN calculations.Comment: Submitted to a Focus Issue on Neutrino Physics in New Journal of
Physics (www.njp.org
Quintessential Kination and Cold Dark Matter Abundance
The generation of a kination-dominated phase by a quintessential exponential
model is investigated and the parameters of the model are restricted so that a
number of observational constraints (originating from nucleosynthesis, the
present acceleration of the universe and the dark-energy-density parameter) are
satisfied. The decoupling of a thermal cold dark matter particle during the
period of kination is analyzed, the relic density is calculated both
numerically and semi-analytically and the results are compared with each other.
It is argued that the enhancement, with respect to the standard paradigm, of
the cold dark matter abundance can be expressed as a function of the
quintessential density parameter at the onset of nucleosynthesis. We find that
values of the latter quantity close to its upper bound require the
thermal-averaged cross section times the velocity of the cold relic to be
almost three orders of magnitude larger than this needed in the standard
scenario so as compatibility with the cold dark matter constraint is achieved.Comment: Published versio
Nuclear Reaction Network for Primordial Nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields
We analyze in details the standard Primordial Nucleosynthesis scenario. In
particular we discuss the key theoretical issues which are involved in a
detailed prediction of light nuclide abundances, as the weak reaction rates,
neutrino decoupling and nuclear rate modeling. We also perform a new analysis
of available data on the main nuclear processes entering the nucleosynthesis
reaction network, with particular stress on their uncertainties as well as on
their role in determining the corresponding uncertainties on light nuclide
theoretical estimates. The current status of theoretical versus experimental
results for 2H, 3He, 4He and 7Li is then discussed using the determination of
the baryon density as obtained from Cosmic Microwave Background anisotropies.Comment: LaTeX, 83 pages, 30 .pdf figures. Some typos in the units of
R-functions in appendix D and relative plots fixe
Gravitational clustering of relic neutrinos and implications for their detection
We study the gravitational clustering of big bang relic neutrinos onto
existing cold dark matter (CDM) and baryonic structures within the flat
CDM model, using both numerical simulations and a semi-analytical
linear technique, with the aim of understanding the neutrinos' clustering
properties for direct detection purposes. In a comparative analysis, we find
that the linear technique systematically underestimates the amount of
clustering for a wide range of CDM halo and neutrino masses. This invalidates
earlier claims of the technique's applicability. We then compute the exact
phase space distribution of relic neutrinos in our neighbourhood at Earth, and
estimate the large scale neutrino density contrasts within the local
Greisen--Zatsepin--Kuzmin zone. With these findings, we discuss the
implications of gravitational neutrino clustering for scattering-based
detection methods, ranging from flux detection via Cavendish-type torsion
balances, to target detection using accelerator beams and cosmic rays. For
emission spectroscopy via resonant annihilation of extremely energetic cosmic
neutrinos on the relic neutrino background, we give new estimates for the
expected enhancement in the event rates in the direction of the Virgo cluster.Comment: 38 pages, 8 embedded figures, iopart.cls; v2: references added, minor
changes in text, to appear in JCA
Extended quintessence with an exponential coupling
We study a class of extended quintessence cosmologies where the scalar field playing the role of the dark energy is exponentially coupled to the Ricci scalar. We find that the dynamics induced by the effective gravitational potential in the Klein\u2013Gordon equation dominates the motion of the field in the early universe. The resulting 'R-boost' trajectory is characterized by a kinetic dark energy density, given by [3\u3c1mnr0(1+z)]2[32\u3c1r0\u3c9JBD0] 121, where \u3c9JBD0, \u3c1r0 and \u3c1mnr0 are calculated at present, and represent the Jordan\u2013Brans\u2013Dicke parameter, the density of relativistic matter and of those species which are non-relativistic at redshift z, respectively. We show that such a trajectory represents an attractor, equivalent to a tracking solution with equation of state w = 121/3, providing a large basin of attraction for the initial dark energy density regardless of the properties of the potential energy yielding acceleration today. We derive the up to date constraints from big bang nucleosynthesis (BBN) on the present scenario, and we show that they are largely satisfied for interesting trajectories of the dark energy scalar field in the early universe. We compute the cosmological perturbation spectra in these cosmologies. For a fixed value of \u3c9JBD\u20090, the projection and integrated Sachs\u2013Wolfe effects on the cosmic microwave background anisotropy are considerably larger in the exponential case with respect to a quadratic non-minimal coupling, reflecting the fact that the effective gravitational constant depends exponentially on the dynamics of the field
Review of Particle Physics
This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 1900 new measurements from 700 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. © 1996 The American Physical Society