4,052 research outputs found
Chaotic dynamics of superconductor vortices in the plastic phase
We present numerical simulation results of driven vortex lattices in presence
of random disorder at zero temperature. We show that the plastic dynamics is
readily understood in the framework of chaos theory. Intermittency "routes to
chaos" have been clearly identified, and positive Lyapunov exponents and
broad-band noise, both characteristic of chaos, are found to coincide with the
differential resistance peak. Furthermore, the fractal dimension of the strange
attractor reveals that the chaotic dynamics of vortices is low-dimensional.Comment: 5 pages, 3 figures Accepted for publication in Physical Review
Letter
Driven flux-line lattices in the presence of weak random columnar disorder: Finite-temperature behavior and dynamical melting of moving Bose glass
We use 3D numerical simulations to explore the phase diagram of driven flux
line lattices in presence of weak random columnar disorder at finite
temperature and high driving force. We show that the moving Bose glass phase
exists in a large range of temperature, up to its melting into a moving vortex
liquid. It is also remarkably stable upon increasing velocity : the dynamical
transition to the correlated moving glass expected at a critical velocity is
not found at any velocity accessible to our simulations. Furthermore, we show
the existence of an effective static tin roof pinning potential in the
direction transverse to motion, which originates from both the transverse
periodicity of the moving lattice and the localization effect due to correlated
disorder. Using a simple model of a single elastic line in such a periodic
potential, we obtain a good description of the transverse field penetration at
surfaces as a function of thickness in the moving Bose glass phase.Comment: 5 pages, 4 figures, New title and minor changes in text and figures.
Accepted for publication in Physical Review
Decoupling Transition I. Flux Lattices in Pure Layered Superconductors
We study the decoupling transition of flux lattices in a layered
superconductors at which the Josephson coupling J is renormalized to zero. We
identify the order parameter and related correlations; the latter are shown to
decay as a power law in the decoupled phase. Within 2nd order renormalization
group we find that the transition is always continuous, in contrast with
results of the self consistent harmonic approximation. The critical temperature
for weak J is ~1/B, where B is the magnetic field, while for strong J it
is~1/sqrt{B} and is strongly enhanced. We show that renormaliztion group can be
used to evaluate the Josephson plasma frequency and find that for weak J it
is~1/BT^2 in the decoupled phase.Comment: 14 pages, 5 figures. New sections III, V. Companion to following
article on "Decoupling and Depinning II: Flux lattices in disordered layered
superconductors
LiBeB, Cosmic Rays and Gamma-Ray Line Astronomy
This article is a summary of a recently held conference on the light
elements, Li, Be and B, and their relationship to cosmic-ray origin and
gamma-ray astronomy. The proceedings will be published by the PASP.Comment: latex 6 pages, uses aasms4.sty To appear in the Publications of the
Astronomical Society of the Pacific (PASP
Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations
Using molecular dynamics simulations, we report a study of the dynamics of
two-dimensional vortex lattices driven over a disordered medium. In strong
disorder, when topological order is lost, we show that the depinning transition
is analogous to a second order critical transition: the velocity-force response
at the onset of motion is continuous and characterized by critical exponents.
Combining studies at zero and nonzero temperature and using a scaling analysis,
two critical expo- nents are evaluated. We find v\sim (F-F_c)^\beta with
\beta=1.3\pm0.1 at T=0 and F>F_c, and v\sim T^{1/\delta} with
\delta^{-1}=0.75\pm0.1 at F=F_c, where F_c is the critical driving force at
which the lattice goes from a pinned state to a sliding one. Both critical
exponents and the scaling function are found to exhibit universality with
regard to the pinning strength and different disorder realizations.
Furthermore, the dynamics is shown to be chaotic in the whole critical region.Comment: 8 pages, 6 figure
On a generalised bootstrap principle
The S-matrices for non-simply-laced affine Toda field theories are considered
in the context of a generalised bootstrap principle. The S-matrices, and in
particular their poles, depend on a parameter whose range lies between the
Coxeter numbers of dual pairs of the corresponding non-simply-laced algebras.
It is proposed that only odd order poles in the physical strip with positive
coefficients throughout this range should participate in the bootstrap. All
other singularities have an explanation in principle in terms of a generalised
Coleman-Thun mechanism. Besides the S-matrices introduced by Delius, Grisaru
and Zanon, the missing case (), is also considered and
provides many interesting examples of pole generation.Comment: 23 pages including two figures, harvma
Requests by Married Parents for Adoption Placement of their Children: An Analysis of a Research Study, with Some Observations on the Relevance of the Study for Social Work Practice
The present study has been undertaken as a result of the reviewer’s interest in the problem of married parents requesting adoption placement of their children, based on her experience in giving service to a small group of these parents at the Children’s Aid Society for the County of Waterloo.
An analysis of the research project of Evelyn McCorkell is the focus of this study. Her project appears to have marked the beginning of an examination of the problem.
Since her study was completed in 1957, there has been additional examination of the problem in the literature, indicating its relevance for social work practice. A review of this literature is included in the present study
- …