1 research outputs found

    Dispersal-enhanced resilience in two-patch metapopulations: origin's instability type matters

    Full text link
    Many populations of animals or plants, exhibit a metapopulation structure with close, spatially-separated subpopulations. The field of metapopulation theory has made significant advancements since the influential Levins model. Various modeling approaches have provided valuable insights to theoretical Ecology. Despite extensive research on metapopulation models, there are still challenging questions that are difficult to answer from ecological metapopulational data or multi-patch models. Low-dimension mathematical models offer a promising avenue to address these questions, especially for global dynamics which have been scarcely investigated. In this study, we investigate a two-patch metapopulation model with logistic growth and diffusion between patches. By using analytical and numerical methods, we thoroughly analyze the impact of diffusion on the dynamics of the metapopulation. We identify the equilibrium points and assess their local and global stability. Furthermore, we analytically derive the optimal diffusion rate that leads to the highest metapopulation values. Our findings demonstrate that increased diffusion plays a crucial role in the preservation of both subpopulations and the full metapopulation, especially under the presence of stochastic perturbations. Specifically, at low diffusion values, the origin is a repeller, causing orbits starting around it to travel closely parallel to the axes. This configuration makes the metapopulation less resilient and thus more susceptible to local and global extinctions. However, as diffusion increases, the repeller transitions to a saddle point, and orbits starting near the origin rapidly converge to the unstable manifold of the saddle. This phenomenon reduces the likelihood of stochastic extinctions and the metapopulation becomes more resilient due to these changes in the vector field of the phase space.Comment: submitted to International Journal of Bifurcation and Chao
    corecore