547 research outputs found

    Free-electron Model for Mesoscopic Force Fluctuations in Nanowires

    Full text link
    When two metal electrodes are separated, a nanometer sized wire (nanowire) is formed just before the contact breaks. The electrical conduction measured during this retraction process shows signs of quantized conductance in units of G_0=2e^2/h. Recent experiments show that the force acting on the wire during separation fluctuates, which has been interpreted as being due to atomic rearrangements. In this report we use a simple free electron model, for two simple geometries, and show that the electronic contribution to the force fluctuations is comparable to the experimentally found values, about 2 nN.Comment: 4 pages, 3 figures, reference correcte

    Elevated osteoprotegerin is associated with abnormal ankle brachial indices in patients infected with HIV: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients infected with HIV have an increased risk for accelerated atherosclerosis. Elevated levels of osteoprotegerin, an inflammatory cytokine receptor, have been associated with a high incidence of cardiovascular disease (including peripheral arterial disease, or PAD), acute coronary syndrome, and cardiovascular mortality. The objective of this study was to determine whether PAD is prevalent in an HIV-infected population, and to identify an association with HIV-specific and traditional cardiovascular risk factors, as well as levels of osteoprotegerin.</p> <p>Methods</p> <p>One hundred and two patients infected with HIV were recruited in a cross-sectional study. To identify the prevalence of PAD, ankle-brachial indices (ABIs) were measured. Four standard ABI categories were utilized: ≤ 0.90 (definite PAD); 0.91-0.99 (borderline); 1.00-1.30 (normal); and >1.30 (high). Medical history and laboratory measurements were obtained to determine possible risk factors associated with PAD in HIV-infected patients.</p> <p>Results</p> <p>The prevalence of PAD (ABI ≤ 0.90) in a young HIV-infected population (mean age: 48 years) was 11%. Traditional cardiovascular risk factors, including advanced age and previous cardiovascular history, as well as elevated C-reactive protein levels, were associated with PAD. Compared with patients with normal ABIs, patients with high ABIs had significantly elevated levels of osteoprotegerin [1428.9 (713.1) pg/ml vs. 3088.6 (3565.9) pg/ml, respectively, p = 0.03].</p> <p>Conclusions</p> <p>There is a high prevalence of PAD in young HIV-infected patients. A number of traditional cardiovascular risk factors and increased osteoprotegerin concentrations are associated with abnormal ABIs. Thus, early screening and aggressive medical management for PAD may be warranted in HIV-infected patients.</p

    Modeling Wildlife Damage to Crops in Northern Indiana

    Get PDF
    Comprehensive information on crop damage by wildlife species is critical if effective strategies for controlling wildlife damage are to be formulated. Discriminating how landscape composition and configuration attributes influence crop damage is important for implementing landscape management techniques to resolve human–wildlife conflicts. We analyzed crop damage data from 100 corn fields and 60 soybean fields located in the Upper Wabash River Basin of northern Indiana during 2003 and 2004. We used negative binomial regression to model the rate of damage to corn and soybean crops in response to local and landscape variables. Rate of crop damage was best predicted by a combination of local and landscape variables for both corn and soybeans. Models with landscape configuration variables were better able to explain patterns of corn damage, and models with landscape composition variables (specifically, amount of wooded areas) were better able to explain patterns of soybean damage. In general, rate of crop damage was negatively related to size of the crop field and positively related to proportion of a field’s perimeter that was adjacent to wooded areas, amount of wooded areas, amount of forest edge, and mean size of forest patches. Specific associations between local and landscape variables and rates of crop damage may serve as a guide to planting strategies and landscape management to minimize wildlife damage to crops

    A search for two body muon decay signals

    Get PDF
    Lepton family number violation is tested by searching for μ+e+X0\mu^+\to e^+X^0 decays among the 5.8×108\times 10^8 positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive X0X^0 bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic μ+e+X0\mu^+\to e^+X^0 decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order 10510^{-5} are obtained for bosons with masses of 13 - 80 MeV/c2^2 and with different decay asymmetries. For bosons with masses less than 13 MeV/c2^{2} the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to 5.8×1055.8 \times 10^{-5}. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.Comment: 7 pages, 5 figures, 2 tables, accepted by PR

    Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

    Full text link
    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments

    Production of antihydrogen at reduced magnetic field for anti-atom trapping

    Get PDF
    We have demonstrated production of antihydrogen in a 1,,T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3,,T) and ATRAP (5,,T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3,,T, and then mix the antiprotons with positrons at 1,,T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed

    Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    Full text link
    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.Comment: 17 figure
    corecore