25 research outputs found

    A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes

    No full text
    High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR–TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization—clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development

    Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L. (Fabaceae)

    No full text
    The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytogenomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H.arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); (3) H. caucasicum (one chromosome pair with 45S rDNA and one chromosome pair bearing 5S rDNA and 45S rDNA); (4) H. neglectum (two pairs with 45S rDNA and one pair bearing 5S rDNA). The species-specific chromosomal markers detected in karyotypes of H. alpinum, H. caucasicum, and H. neglectum can be useful in taxonomic studies of this section

    Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus <i>Salvia</i> (Lamiaceae)

    No full text
    Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data

    Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae)

    No full text
    Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12&ndash;18 high confident and 7&ndash;9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution

    Molecular Cytogenetics of Pisum sativum L. Grown under Spaceflight-Related Stress

    No full text
    The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the “space grown” pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the “space grown” pea plants and generations of these plants cultivated on Earth

    Genome Studies in Four Species of <i>Calendula</i> L. (Asteraceae) Using Satellite DNAs as Chromosome Markers

    No full text
    The taxonomically challenging genus Calendula L. (Asteraceae) includes lots of medicinal species characterized by their high morphological and karyological variability. For the first time, a repeatome analysis of a valuable medicinal plant Calendula officinalis L. was carried out using high-throughput genome DNA sequencing and RepeatExplorer/TAREAN pipelines. The FISH-based visualization of the 45S rDNA, 5S rDNA, and satellite DNAs of C. officinalis was performed on the chromosomes of C. officinalis, C. stellata Cav., C. tripterocarpa Rupr., and C. arvensis L. Three satellite DNAs were demonstrated to be new molecular chromosome markers to study the karyotype structure. Karyograms of the studied species were constructed, their ploidy status was specified, and their relationships were clarified. Our results showed that the C. officinalis karyotype differed from the karyotypes of the other three species, indicating its separate position in the Calendula phylogeny. However, the presence of common repeats revealed in the genomes of all the studied species could be related to their common origin. Our findings demonstrated that C. stellata contributed its genome to allotetraploid C. tripterocarpa, and C. arvensis is an allohexaploid hybrid between C. stellata and C. tripterocarpa. At the same time, further karyotype studies of various Calendula species are required to clarify the pathways of chromosomal reorganization that occurred during speciation

    Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species.

    No full text
    The genus Deschampsia P. Beauv (Poaceae) involves a group of widespread polymorphic species. Some of them are highly tolerant to stressful and variable environmental conditions, and D. antarctica is one of the only two vascular plants growing in Antarctic. This species is a source of useful for selection traits and a valuable model for studying an environmental stress tolerance in plants. Genome diversity and comparative chromosomal phylogeny within the genus have not been studied yet as karyotypes of most Deschampsia species are poorly investigated. We firstly conducted a comparative molecular cytogenetic analysis of D. antarctica (Antarctic Peninsula) and related species from various localities (D. cespitosa, D. danthonioides, D. elongata, D. flexuosa (= Avenella flexuosa), D. parvula and D. sukatschewii by fluorescence in situ hybridization with 45S and 5S rDNA, DAPI-banding and sequential rapid in situ hybridization with genomic DNA of D. antarctica, D. cespitosa, and D. flexuosa. Based on patterns of distribution of the examined markers, chromosomes of the studied species were identified. Within these species, common features as well as species peculiarities in their karyotypic structure and chromosomal distribution of molecular cytogenetic markers were characterized. Different chromosomal rearrangements were detected in D. antarctica, D. flexuosa, D. elongata and D. sukatschewii. In karyotypes of D. antarctica, D. cespitosa, D. elongata and D. sukatschewii, 0-3 B chromosomes possessed distinct DAPI-bands were observed. Our findings suggest that the genome evolution of the genus Deschampsia involved polyploidy and also different chromosomal rearrangements. The obtained results will help clarify the relationships within the genus Deschampsia, and can be a basis for the further genetic and biotechnological studies as well as for selection of plants tolerant to extreme habitats

    Agro-Morphological and Cytogenetic Characterization of Colchicine-Induced Tetraploid Plants of <i>Polemonium caeruleum</i> L. (Polemoniaceae)

    No full text
    Polemonium caeruleum L. (Polemoniaceae) is a valuable medicinal herb with a wide spectrum of biological activities. Under natural conditions, the productivity of this species is rather low. In this study, colchicine-induced tetraploid plants (2n = 4x = 36) of P. caeruleum were obtained, and for the first time, their morphological and cytogenetic characterization was performed. In the tetraploid plants, raw material productivity and also the content of triterpene saponins were significantly higher than in the control diploids. The analysis of chromosome behavior at meiosis and FISH chromosome mapping of 45S and 5S rDNA generally demonstrated stability of both genomes in the tetraploid plants. Based on chromosome morphology and distribution patterns of the studied molecular cytogenetic markers, all chromosome pairs in karyotypes were identified, and chromosome karyograms and idiograms of P. caeruleum were constructed. The revealed specific microdiagnostic characteristics of P. caeruleum (strongly sinuous cells and anomocytic stomata of the leaf epidermis, and also glandular hairs along the veins) could be useful for raw material identification. In the obtained tetraploids, the predominance of large stomata on the lower leaf epidermis was determined. The studied tetraploids can be used in various breeding programs to obtain high-quality pharmaceutical raw materials of P. caeruleum

    Characterization of repeated DNA sequences in genomes of blue-flowered flax

    No full text
    Abstract Background Members of different sections of the genus Linum are characterized by wide variability in size, morphology and number of chromosomes in karyotypes. Since such variability is determined mainly by the amount and composition of repeated sequences, we conducted a comparative study of the repeatomes of species from four sections forming a clade of blue-flowered flax. Based on the results of high-throughput genome sequencing performed in this study as well as available WGS data, bioinformatic analyses of repeated sequences from 12 flax samples were carried out using a graph-based clustering method. Results It was found that the genomes of closely related species, which have a similar karyotype structure, are also similar in the repeatome composition. In contrast, the repeatomes of karyologically distinct species differed significantly, and no similar tandem-organized repeats have been identified in their genomes. At the same time, many common mobile element families have been identified in genomes of all species, among them, Athila Ty3/gypsy LTR retrotransposon was the most abundant. The 30-chromosome members of the sect. Linum (including the cultivated species L. usitatissimum) differed significantly from other studied species by a great number of satellite DNA families as well as their relative content in genomes. Conclusions The evolution of studied flax species was accompanied by waves of amplification of satellite DNAs and LTR retrotransposons. The observed inverse correlation between the total contents of dispersed repeats and satellite DNAs allowed to suggest a relationship between both classes of repeating sequences. Significant interspecific differences in satellite DNA sets indicated a high rate of evolution of this genomic fraction. The phylogenetic relationships between the investigated flax species, obtained by comparison of the repeatomes, agreed with the results of previous molecular phylogenetic studies
    corecore