38 research outputs found

    A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes

    No full text
    High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR–TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization—clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development

    Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus <i>Salvia</i> (Lamiaceae)

    No full text
    Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data

    Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae)

    No full text
    Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12&ndash;18 high confident and 7&ndash;9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution

    Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L. (Fabaceae)

    No full text
    The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytogenomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H.arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); (3) H. caucasicum (one chromosome pair with 45S rDNA and one chromosome pair bearing 5S rDNA and 45S rDNA); (4) H. neglectum (two pairs with 45S rDNA and one pair bearing 5S rDNA). The species-specific chromosomal markers detected in karyotypes of H. alpinum, H. caucasicum, and H. neglectum can be useful in taxonomic studies of this section

    Genome Studies in Four Species of <i>Calendula</i> L. (Asteraceae) Using Satellite DNAs as Chromosome Markers

    No full text
    The taxonomically challenging genus Calendula L. (Asteraceae) includes lots of medicinal species characterized by their high morphological and karyological variability. For the first time, a repeatome analysis of a valuable medicinal plant Calendula officinalis L. was carried out using high-throughput genome DNA sequencing and RepeatExplorer/TAREAN pipelines. The FISH-based visualization of the 45S rDNA, 5S rDNA, and satellite DNAs of C. officinalis was performed on the chromosomes of C. officinalis, C. stellata Cav., C. tripterocarpa Rupr., and C. arvensis L. Three satellite DNAs were demonstrated to be new molecular chromosome markers to study the karyotype structure. Karyograms of the studied species were constructed, their ploidy status was specified, and their relationships were clarified. Our results showed that the C. officinalis karyotype differed from the karyotypes of the other three species, indicating its separate position in the Calendula phylogeny. However, the presence of common repeats revealed in the genomes of all the studied species could be related to their common origin. Our findings demonstrated that C. stellata contributed its genome to allotetraploid C. tripterocarpa, and C. arvensis is an allohexaploid hybrid between C. stellata and C. tripterocarpa. At the same time, further karyotype studies of various Calendula species are required to clarify the pathways of chromosomal reorganization that occurred during speciation

    Molecular Cytogenetics of Pisum sativum L. Grown under Spaceflight-Related Stress

    No full text
    The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the “space grown” pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the “space grown” pea plants and generations of these plants cultivated on Earth

    Agro-Morphological, Microanatomical and Molecular Cytogenetic Characterization of the Medicinal Plant Chelidonium majus L.

    No full text
    Chelidonium majus L. is a medicinal plant well-known as a valuable source of isoquinoline alkaloids, which has a variety of pharmacological properties including anti-viral and anti-bacterial effects. However, considerable intraspecific bio-morphological variability in C. majus complicates raw material identification and verification. For the first time, we have brought into cultivation five populations of C. majus subsp. majus originated from different regions, and performed their agro-morphological, microanatomical and molecular cytogenetic characterization. All examined populations produced high seed (18.6&ndash;19.9 kg/ha) and raw material (0.84&ndash;1.08 t/ha) yields; total alkaloid contents were within 0.30&ndash;0.38%. Nevertheless, significant differences in plant morphology and yield-contributing traits were observed. The performed microanatomical analysis of leaves and flowers in double- and normal-flowered plants revealed micro-diagnostic features (including tissue topography, types of stomata, laticifers, structure of leaf mesophyll, hairs, sepals and petals) important for identification of C. majus raw materials. The analysis of chromosome morphology, DAPI-banding patterns, FISH mapping of 45S and 5S rDNA and also chromosome behavior in meiosis allowed us to identify for the first time all chromosomes in karyotypes and confirm relative genotype stability of the studied plants. Our findings indicate that the examined C. majus populations can be used in further breeding programs

    Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA) Genes in Flax (Linum usitatissimum L.)

    No full text
    Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding

    Clarification of the Position of Linum stelleroides Planch. within the Phylogeny of the Genus Linum L.

    No full text
    The phylogeny of members of the family Linaceae DC. ex Perleb has not been adequately studied. In particular, data on the phylogenetic relationship between Linum stelleroides Planch. and other representatives of the blue-flowered flax are very controversial. In the present work, to clarify this issue, we obtained DNA sequences of three nuclear loci (IGS and ITS1 + 5.8S rDNA + ITS2 of the 35S rRNA gene and the 5S rRNA gene) and eight chloroplast loci (rbcL, the trnL&ndash;trnF intergenic spacer, matK, the 3&prime; trnK intron, ndhF, trnG, the psbA&ndash;trnH intergenic spacer, and rpl16) of 10 Linum L. species (L. stelleroides, L. hirsutum, L. perenne, L. leonii, L. lewisii, L. narbonense, L. decumbens, L. grandiflorum, L. bienne (syn. L. angustifolium), and L. usitatissimum) using high-throughput sequencing data. The phylogenetic analysis showed that L. stelleroides forms a basal branch in the blue-flowered flax clade. Previously found inconsistencies in the position of L. stelleroides and some other species in the Linaceae phylogenetic tree resulted from the erroneous species identification of some of the studied plant samples
    corecore