3 research outputs found
Potentiometric Multisensory Systems with Novel Ion-Exchange Polymer-Based Sensors for Analysis of Drugs
This paper examines potentiometric multisensory systems that consist of novel cross-sensitive PD-sensors (Potential Donnansensors). The analytical signal of PD-sensors is the Donnan potential at the ion-exchange polymer/electrolyte test solution interface. The use of novel sensors for the quantitative analysis of multicomponent aqueous solutions of amino acids, vitamins and medical substances is based on protolytic and ion-exchange reactions at the interfaces of ion-exchangers and test solutions. The potentiometric sensor arrays consist of PD-sensors and ion-selective electrodes. Such systems were developed for the multicomponent quantitative analysis of lysine monohydrochloride, thiamine chloride and novocaine hydrochloride solutions that contained salts of alkaline and alkaline-earth metals, as well as for mixed solutions of nicotinic acid and pyridoxine hydrochloride. Multivariate methods of analysis were used for sensor calibration and the analysis of the total response of sensor arrays. The errors of measurement of the electrolytes in aqueous solutions did not exceed 10%. The developed multisensory systems were used to determine the composition of a therapeutic "Mineral salt with low content of sodium chloride" and to determine concentrations of novocaine in sewage samples from a dental clinic
Potentiometric Multisensory Systems with Novel Ion-Exchange Polymer-Based Sensors for Analysis of Drugs
This paper examines potentiometric multisensory systems that consist of novel cross-sensitive PD-sensors (Potential Donnan-sensors). The analytical signal of PD-sensors is the Donnan potential at the ion-exchange polymer/electrolyte test solution interface. The use of novel sensors for the quantitative analysis of multicomponent aqueous solutions of amino acids, vitamins and medical substances is based on protolytic and ion-exchange reactions at the interfaces of ion-exchangers and test solutions. The potentiometric sensor arrays consist of PD-sensors and ion-selective electrodes. Such systems were developed for the multicomponent quantitative analysis of lysine monohydrochloride, thiamine chloride and novocaine hydrochloride solutions that contained salts of alkaline and alkaline-earth metals, as well as for mixed solutions of nicotinic acid and pyridoxine hydrochloride. Multivariate methods of analysis were used for sensor calibration and the analysis of the total response of sensor arrays. The errors of measurement of the electrolytes in aqueous solutions did not exceed 10%. The developed multisensory systems were used to determine the composition of a therapeutic “Mineral salt with low content of sodium chloride” and to determine concentrations of novocaine in sewage samples from a dental clinic
Perfluorosulfonic Acid Membranes with Short and Long Side Chains and Their Use in Sensors for the Determination of Markers of Viral Diseases in Saliva
The development of accessible express methods to determine markers of viral diseases in saliva is currently an actual problem. Novel cross-sensitive sensors based on Donnan potential with bio-comparable perfluorosulfonic acid membranes for the determination of salivary viral markers (N-acetyl-L-methionine, L-carnitine, and L-lysine) were proposed. Membranes were formed by casting from dispersions of Nafion or Aquivion in N-methyl-2-pyrollidone or in a mixture of isopropyl alcohol and water. The influence of the polymer equivalent weight and the nature of dispersing liquid on water uptake, ion conductivity, and slope of Donnan potential for the membranes in H+ and Na+ form was investigated. The varying of the sorption and transport properties of perfluorosulfonic acid membranes provided a change in the distribution of the sensor sensitivity to N-acetyl-L-methionine, L-carnitine, and L-lysine ions, which was necessary for multisensory system development. The simultaneous determination of three analytes, and the group analysis of them in artificial saliva solutions, was performed. The errors of N-acetyl-L-methionine and L-carnitine determination were 4–12 and 3–11%, respectively. The determination of L-lysine was complicated by its interaction with Ca2+ ions. The error of the group analysis was no greater than 9%. The reverse character of the viral markers’ sorption by the membranes provided long-term sensor operation