26 research outputs found

    Quadrupolar metal NMR of oxide materials including catalysts

    No full text
    In this work, we review the basic methodology and recent applications of quadrupolar metal solid-state NMR spectroscopy in oxide systems with emphasis on materials science and catalysis. Three typical quadrupolar metal nuclei, 51V, 93Nb, and 95Mo, are discussed in detail to illustrate the complex interplay between the quadrupolar and chemical shielding interactions in oxides. In the first part, a systematic overview is given of the metal coordination environments in oxides and their corresponding NMR parameters. The importance of quantum chemical calculations in correlating experimental NMR results with a molecular level oxide structure is highlighted. In the second part, we present examples of quadrupolar metal NMR in materials science, including paramagnetic oxide systems, layered materials, ferroelectrics, silicates, and glasses. The final section is dedicated to the latest applications of NMR in heterogeneous oxide catalysis.Peer reviewed: YesNRC publication: Ye

    Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR

    No full text
    International audienceDespite the fact that cobalt based catalysts are used at the industrial scale for Fischer-Tropsch synthesis, it is not yet clear which cobalt metallic phase is actually at work under operando conditions and what is its state of dispersion. As it turns out, the different phases of metallic cobalt, fcc and hcp, give rise to distinct ferromagnetic nuclear magnetic resonance. Furthermore, within one Co metal particle, the occurrence of several ferromagnetic domains of limited sizes can be evidenced by the specific resonance of Co in multi-domain particles. Consequently, by ferromagnetic NMR, one can follow quantitatively the sintering and phase transitions of dispersed Co metal particles in supported catalysts under near operando conditions. The minimal size probed by ferromagnetic Co NMR is not precisely known but is considered to be in the order of 10 nm for supported Co particles at room temperature and increases to about 35 nm at 850 K. Here, in Co metal Fischer-Tropsch synthesis catalysts supported on beta-SiC, the resonances of the fcc multi-domain, fcc single-domain and hcp Co were clearly distinguished. A careful rationalization of their frequency and width dependence on temperature allowed a quantitative analysis of the spectra in the temperature range of interest, thus reflecting the state of the catalysts under near operando conditions that is without the uncertainty associated with prior quenching. The allotropic transition temperature was found to start at 600-650 K, which is about 50 K below the bulk transition temperature. The phase transition was fully reversible and a significant part of the hcp phase was found to be stable up to 850 K. This anomalous behavior that was observed without quenching might prove to be crucial to understand and model active species not only in catalysts but also in battery materials

    Synthesis and Composition Study of Electrochemically Deposited Ni-P Coating with Increased Surface Area

    No full text
    Nickel phosphides NixPy are a promising family of binary compounds that have shown much promise in various fields of technology, including energy storage, light absorption and heterogeneous catalysis in the reactions of biomass hydrogenation. The performance of NixPy-containing materials depends greatly on their morphology and phase composition and, in turn, on the synthesis technique. In this work, we have employed the electroplating approach to synthesize a Ni-P coating, which was treated with nitric acid in order to develop its surface area and enrich it with phosphorus. We have employed scanning electron microscopy, X-ray diffraction and 31P nuclear magnetic resonance techniques to characterize the particles separated from the coating with ultrasound for the convenience of the study. According to experimental data, the obtained powder contained a mixture of Ni3P and phosphorus oxides, which transformed into nickel phosphide phases richer with phosphorus, such as Ni5P2 and Ni12P5, after treatment at elevated temperatures. Thus, we have demonstrated that electroplating followed by acid treatment is a feasible approach for the synthesis of Ni-P coatings with increased surface area and variable phase composition
    corecore