4 research outputs found

    Gas chromatograpic retention indices for N-substituted amino s-triazines on capillary columns. Part IV. Influence of column polarity on retention index

    No full text
    The retention index increment for the addition of a methylene group to the alkyl group of an analyte molecule is shown to be lower than 100 i.u. for N-substituted amino s-triazines. In temperature progammed gas chromatography, a linearly interpolated retention index I, determined from the linear regression equation, I = AZ + (GRF)z, with the number of atoms (Z) in the molecule as variable, was used to describe the retention of 25 N-substituted amino s-triazines, on DB-1, DB-5 and DB-WAX capillary columns, divided into five series according to the similarity of the alkyl groups in the particular series. In the above equation, A is the linear regression coefficient or the retention index increment per atom addition, Z the number of C, N and Cl atoms in the molecule, and (GRF)z the group retention factor or functionality constant for functional groups in the molecule, based on the number Z. It is possible to estimate the retention indices of an unknown member of the series from the Z, A and (GRF) values

    Oxidative Stress in Fetal Distress: Potential Prospects for Diagnosis

    No full text
    Our aim was to investigate the relation between fetal distress and oxidative stress. Fetal distress was associated with increased concentration of superoxide in the fetal blood and with significant increase of the level of H2O2 in both maternal and fetal blood. The activity of superoxide dismutase was increased roughly sixfold (p < 0.01) in the maternal [7330 ± 2240 U/g of hemoglobin in controls (C) and 36811 ± 16862 U/g in fetal distress (FD)] and fetal blood (C: 5930 ± 2641 U/g; FD: 41912 ± 17133 U/g). In contrast, fetal distress was related to a considerable decrease of catalase activity in both maternal (C: 26011 ± 8811 U/g; FD: 7212 ± 1270 U/g) and fetal blood (C: 37194 ± 9191 U/g; FD: 6173 ± 1965 U/g). From this we concluded that in fetal distress, the maternal and fetal bloods are exposed to superoxide- and H2O2-mediated oxidative stress, which could be initiated by hypoxic conditions in the fetal blood and placenta. A tremendous increase/decrease of the activities of superoxide dismutase/catalase in the blood of women bearing a distressed fetus in comparison to healthy subjects implies that the assessment of superoxide dismutase/catalase activity could be of use for establishing a timely and accurate ante- or intrapartum diagnosis of fetal distress
    corecore