25 research outputs found

    Lignin and Xylan as interface engineering additives for improved environmental durability of sustainable cellulose nanopapers

    Get PDF
    Cellulose materials and products are frequently affected by environmental factors such as light, temperature, and humidity. Simulated UV irradiation, heat, and moisture exposure were comprehensively used to characterize changes in cellulose nanopaper (NP) tensile properties. For the preparation of NP, high-purity cellulose from old, unused filter paper waste was used. Lignin and xylan were used as sustainable green interface engineering modifiers for NP due to their structural compatibility, low price, nontoxic nature, and abundance as a by-product of biomass processing, as well as their ability to protect cellulose fibers from UV irradiation. Nanofibrillated cellulose (NFC) suspension was obtained by microfluidizing cellulose suspension, and NP was produced by casting films from water suspensions. The use of filler from 1 to 30 wt% significantly altered NP properties. All nanopapers were tested for their sensitivity to water humidity, which reduced mechanical properties from 10 to 40% depending on the saturation level. Xylan addition showed a significant increase in the specific elastic modulus and specific strength by 1.4- and 2.8-fold, respectively. Xylan-containing NPs had remarkable resistance to UV irradiation, retaining 50 to 90% of their initial properties. Lignin-modified NPs resulted in a decreased mechanical performance due to the particle structure of the filler and the agglomeration process, but it was compensated by good property retention and enhanced elongation. The UV oxidation process of the NP interface was studied with UV-Vis and FTIR spectroscopy, which showed that the degradation of lignin and xylan preserves a cellulose fiber structure. Scanning electron microscopy images revealed the structural formation of the interface and supplemented understanding of UV aging impact on the surface and penetration depth in the cross-section. The ability to overcome premature aging in environmental factors can significantly benefit the wide adaption of NP in food packaging and functional applications

    Environmental Effects on Strength and Failure Strain Distributions of Sheep Wool Fibers

    No full text
    Sheep wool is an eco-friendly, renewable, and totally recyclable material increasingly used in textiles, filters, insulation, and building materials. Recently, wool fibers have become good alternatives for reinforcement of polymer composites and filaments for 3D printing. Wool fibers are susceptible to environmental degradation that could shorten their lifetime and limit applications. This study reports on the mechanical properties of sheep wool fibers under the impact of humid air and UV irradiation. The results of single fiber tensile tests showed a noticeable gauge length effect on the fibers’ strength and failure strain. Long (50 mm) fibers possessed about 40% lower characteristics than short (10 mm) fibers. Environmental aging decreased the elastic modulus and strength of the fibers. Moisture-saturated fibers possessed up to 43% lower characteristics, while UV aging resulted in up to a twofold reduction of the strength. The most severe degradation effect is observed under the coupled influence of UVs and moisture. The two-parameter Weibull distribution was applied for the fiber strength and failure strain statistical assessment. The model well predicted the gauge length effects. Moisture-saturated and UV-aged fibers were characterized by less extensive strength dependences on the fiber length. The strength and failure strain distributions of aged fibers were horizontally shifted to lower values. The results will contribute to be reliable predictions of the environmental durability of sheep wool fibers and will extend their use in technical applications

    Hydrothermal Ageing Effect on Reinforcement Efficiency of Nanofibrillated Cellulose/Biobased Poly(butylene succinate) Composites

    No full text
    Nanofibrillated cellulose (NFC) is a sustainable functional nanomaterial known for its high strength, stiffness, and biocompatibility. It has become a key building block for the next-generation of lightweight, advanced materials for applications such as consumer products, biomedical, energy storage, coatings, construction, and automotive. Tunable and predictable durability under environmental impact is required for high performance applications. Bio-based poly (butylene succinate) (PBS) composites containing up to 50% NFC content were designed and aged in distilled water or at high relative humidity (RH98%). PBS/NFC composites are characterized by up to 10-fold increased water absorption capacity and diffusivity and the data are correlated with model calculations. Aged samples exhibited decreased crystallinity and melting temperature. Incorporation of NFC into PBS showed up to a 2.6-fold enhancement of the elastic modulus, although accompanied by a loss of strength by 40% and 8-fold reduction in the strain at failure of maximally loaded composites. Hydrothermal ageing had almost no influence on the tensile characteristics of PBS; however, there were considerable degradation effects in PBS/NFC composites. Altered reinforcement efficiency is manifested through a 3.7-fold decreased effective elastic moduli of NFC determined by applying the Halpin–Tsai model and a proportional reduction of the storage moduli of composites. The adhesion efficiency in composites was reduced by hydrothermal ageing, as measured Puckanszky’s adhesion parameter for the strength, which decreased from 3 to 0.8. For the loss factor, Kubat’s adhesion parameter was increased by an order. PBS filled with 20 wt.% NFC is identified as the most efficient composition, for which negative environmental degradation effects are counterbalanced with the positive reinforcement effect. The PBS matrix can be used to protect the NFC network from water

    Hydrothermal Ageing Effect on Reinforcement Efficiency of Nanofibrillated Cellulose/Biobased Poly(butylene succinate) Composites

    No full text
    Nanofibrillated cellulose (NFC) is a sustainable functional nanomaterial known for its high strength, stiffness, and biocompatibility. It has become a key building block for the next-generation of lightweight, advanced materials for applications such as consumer products, biomedical, energy storage, coatings, construction, and automotive. Tunable and predictable durability under environmental impact is required for high performance applications. Bio-based poly (butylene succinate) (PBS) composites containing up to 50% NFC content were designed and aged in distilled water or at high relative humidity (RH98%). PBS/NFC composites are characterized by up to 10-fold increased water absorption capacity and diffusivity and the data are correlated with model calculations. Aged samples exhibited decreased crystallinity and melting temperature. Incorporation of NFC into PBS showed up to a 2.6-fold enhancement of the elastic modulus, although accompanied by a loss of strength by 40% and 8-fold reduction in the strain at failure of maximally loaded composites. Hydrothermal ageing had almost no influence on the tensile characteristics of PBS; however, there were considerable degradation effects in PBS/NFC composites. Altered reinforcement efficiency is manifested through a 3.7-fold decreased effective elastic moduli of NFC determined by applying the Halpin–Tsai model and a proportional reduction of the storage moduli of composites. The adhesion efficiency in composites was reduced by hydrothermal ageing, as measured Puckanszky’s adhesion parameter for the strength, which decreased from 3 to 0.8. For the loss factor, Kubat’s adhesion parameter was increased by an order. PBS filled with 20 wt.% NFC is identified as the most efficient composition, for which negative environmental degradation effects are counterbalanced with the positive reinforcement effect. The PBS matrix can be used to protect the NFC network from water

    Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications

    No full text
    Electrostatic dissipative (ESD), anti-static (AS), and electromagnetic interference (EMI) shielding materials are commonly based on commodity fossil-fuel-based plastics. This, in turn, contributes to ever-growing non-biodegradable plastic pollution. Graphene nanoplatelets (GN), multi-walled carbon nanotubes (MWCNT), nanostructured carbon black (NCB), and amorphous carbon black (CB) were utilized as nanofillers to prepare bio-based and biodegradable poly(butylene succinate-co-adipate) (PBSA) nanocomposites. Solvent-cast composites were prepared with 1.1 to 30.0 vol.% nanoparticle loading. The literature mainly focuses on relatively low loadings; therefore, for this research, filler loadings were increased up to 30 vol.% but the maximum loading for NCB and CB loadings only reached 17.4 vol.% due to a lack of dimensional stability at higher loadings. The composites were characterized using tensile testing, volumetric and surface conductivity measurements, thermal conductivity measurements, dielectric spectroscopy in the microwave region, and transmittance in the terahertz range. Tensile tests showed excellent carbon filler compatibility and enhanced tensile strength for loadings up to 5 vol.% (up to 20 vol.% for MWCNT). The highest thermal conductivity values were reached for the MWCNT filler, with the 30.0 vol.% filled composite reaching 0.756 W/mK (262% increase over PBSA). All fillers were able to produce composites that yielded volume conductivities above 10−10 S/m. Composites with MWCNT, GN, and NCB inclusions above the percolation threshold are suitable for EMI applications in the microwave and THz frequency range

    Relaxation-driven water diffusion in epoxy resin filled with various carbon nanoparticles

    No full text
    Water sorption-desorption-resorption and swelling were studied for a model epoxy system based on DGEBA resin and triamine curing agent. Four types of carbon nanofillers were incorporated into the epoxy matrix: multiwall carbon nanotubes, graphite nano-platelets, expanded graphite platelets, and carbon black. Two-stage sorption and swelling behaviour was observed for all types of nanocomposites. An extent of the anomalous sorption depends on temperature, time and history of the test, and type of the filler. Diffusion-relaxation model of Berens and Hofenberg finely described sorption and resorption experimental curves, while desorption of all samples obeyed the Fick's law. The only additional parameter - relaxation time of polymer network - was introduced into general equations. The relaxation time increased with the addition of nanofillers and decreased with temperature increase. Dynamic mechanical thermal analysis was done to evaluate the plasticizing effect due to the absorbed water and to give an insight into the structural changes of the nanocomposites caused by their hydrothermal ageing. Water absorption resulted in plastification of the polymer that appeared in drop of glass transition temperature and lowering and broadening of tan δ peak, while after-cure and physical ageing effects appeared in the increased storage modulus

    Anomalous water diffusion in epoxy/carbon nanoparticle composites

    No full text
    Water absorption-desorption-resorption and swelling were studied for a DGEBA-based amine-cured epoxy resin filled with four types of carbon nanoparticles: multiwall carbon nanotubes (MWCNT), graphite nano-platelets (GnP), expanded graphite platelets, and carbon black. Nanocomposites are characterised by lower diffusivity (down to 20% for epoxy/GnP) and increased water sorption capacity compared to the neat epoxy. Anomalous water absorption and swelling of nanocomposites is finely described by the diffusion-relaxation model. The relaxation times, considered as quantitative indicators of changes in segmental mobility of the polymer, increased with addition of nanoparticles and decreased with temperature. Epoxy/MWCNT composites are characterised by the longest relaxation times (twofold increase) and highest Deborah numbers compared to the neat epoxy and other nanocomposites. Hydrothermal ageing effects and efficiency of nanoparticles on thermal and thermomechanical properties of the epoxy were estimated. Water uptake in nanocomposites is accompanied by several competing processes: plasticization, after-cure, and physical ageing of the polymer matrix

    Water transport in epoxy/MWCNT composites

    No full text
    Moisture and water uptake of epoxy/multi-wall carbon nanotube (MWCNT) composites was studied in a wide range of atmosphere relative humidity and temperatures. Addition of up to 1 wt.% of MWCNTs into the neat epoxy resulted to the twofold decrease of the diffusivity, while the levels of moisture/water uptake remained unchanged. The positive effect on the reduction of the diffusion coefficient diminishes with the increase of temperature. Differences in the water transport properties and plasticization ability of the neat polymer and its nanocomposites are explained by the free volume considerations and the polymer-water interactions, which are verified by the results of thermomechanical analysis. Water uptake by the nanocomposites resulted to a lower decrease of the storage modulus than that of the neat epoxy

    Sustainable Foams from Hemp, Lignin, Xylan, Pectin, and Glycerol: Tunable via Reversible Citric Acid Crosslinking for Absorption and Insulation Applications

    Get PDF
    This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm3, and porosity values varied from 97% to 99% for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses
    corecore