34 research outputs found

    Electronic Pneumatic Injection-Assisted Dermal Drug Delivery Visualized by Ex Vivo Confocal Microscopy

    Get PDF
    Background and Objectives: Electronic pneumatic injection (EPI) is a technique for dermal drug delivery, which is increasingly being used in clinical practice. However, only few studies have been reported on cutaneous drug distribution and related clinical endpoints. We aimed to visualize the immediate cutaneous drug distribution, changes in skin architecture, and related clinic

    Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) are promising cancer drugs currently in clinical trials in oncology, including APO866, CHS-828 and the CHS-828 prodrug EB1627/GMX1777, but cancer cell resistance to these drugs has not been studied in detail.</p> <p>Methods</p> <p>Here, we introduce an analogue of CHS-828 called TP201565 with increased potency in cellular assays. Further, we describe and characterize a panel of cell lines with acquired stable resistance towards several NAMPT inhibitors of 18 to 20,000 fold compared to their parental cell lines.</p> <p>Results</p> <p>We find that 4 out of 5 of the resistant sublines display mutations of NAMPT located in the vicinity of the active site or in the dimer interface of NAMPT. Furthermore, we show that these mutations are responsible for the resistance observed. All the resistant cell lines formed xenograft tumours <it>in vivo</it>. Also, we confirm CHS-828 and TP201565 as competitive inhibitors of NAMPT through docking studies and by NAMPT precipitation from cellular lysate by an analogue of TP201565 linked to sepharose. The NAMPT precipitation could be inhibited by addition of APO866.</p> <p>Conclusion</p> <p>We found that CHS-828 and TP201565 are competitive inhibitors of NAMPT and that acquired resistance towards NAMPT inhibitors can be expected primarily to be caused by mutations in NAMPT.</p

    Ablative fractional CO<sub>2</sub> laser treatment promotes wound healing phenotype in skin macrophages

    No full text
    Objectives: Ablative fractional laser (AFL) treatment is a well-established method for reducing signs of skin photoaging. However, the biological mechanisms underlying AFL-induced healing responses and skin rejuvenation remain largely unknown. It is known that macrophages play an important role in orchestrating healing, normalization, and remodeling processes in skin. Macrophage phenotypes are characterized by inflammatory markers, including arginase-1 (Arg1), major histocompatibility class II molecules (MHC II), and CD206. This study aims to explore AFL's effect on macrophage phenotype by evaluating changes in inflammatory markers and the potential concurrent accumulation of Arg1 in the skin. Methods: Mice (n = 9) received a single AFL treatment on the left side of the back skin (100 mJ/microbeam, 5% density) while the right side of the back remained untreated as control. Treated and untreated skin from each mouse were collected Day 5 posttreatment for flow cytometry and histology analysis. Flow cytometry evaluated the immune infiltration of macrophages and the expression of macrophage inflammatory markers (Arg1, MHC II, and CD206). In addition, Arg1 presence in the skin was evaluated through antibody staining of histology samples and quantification was performed using QuPath image analysis software. Results: Following AFL, the number of macrophages increased 11-fold (p = 0.0053). Phenotype analysis of AFL-treated skin revealed an increase in the percentage of macrophages positive for Arg1 (p &lt; 0.0001) and a decrease in the percentage of macrophages positive for MHC II (p &lt; 0.0001) compared to untreated skin. No significant differences were observed in percentage of CD206-positive macrophages (p = 0.8952). Visualization of AFL-treated skin demonstrated a distinct pattern of Arg1 accumulation that correlated with the microscopic treatment zones (MTZ). Quantification of the percentage of Arg1-positive area in epidermis and dermis showed a significant increase from 3.5% ± 1.2% to 5.2% ± 1.7 (p = 0.0232) and an increase from 2.2% ± 1.2% to 9.6% ± 3.3 (p &lt; 0.0001) in whole skin samples. Conclusion: AFL treatment polarizes macrophages toward a wound healing phenotype and induces Arg1 accumulation in the MTZ. We propose that the polarized wound healing macrophages are a major source for the increased Arg1 levels observed in the skin following treatment.</p
    corecore