3 research outputs found

    Using an Adaptive Network-based Fuzzy Inference System to Estimate the Vertical Force in Single Point Incremental Forming

    Get PDF
    Manufacturing processes are usually complex ones, involving a significant number of parameters. Unconventional manufacturing processes, such as incremental forming is even more complex, and the establishment of some analytical relationships between parameters is difficult, largely due to the nonlinearities in the process. To overcome this drawback, artificial intelligence techniques were used to build empirical models from experimental data sets acquired from the manufacturing processes. The approach proposed in this work used an adaptive network-based fuzzy inference system to extract the value of technological force on Z-axis, which appears during incremental forming, considering a set of technological parameters (diameter of the tool, feed and incremental step) as inputs. Sets of experimental data were generated and processed by means of the proposed system, to make use of the learning ability of it to extract the empirical values of the technological force from rough data

    Finite element analysis of the tibial component alignment in frontal and sagittal plane in total knee arthroplasty

    Get PDF
    Background. This study aims to analyze the tibial component using the finite element method by cutting the tibial in frontal and sagittal planes at an angle between 1.5° (valgus and anterior tilt) and -1.5° (varus and posterior tilt). Methods. This experimental study used the finite element method as an useful tool for simulating the positioning of the tibial component in order to create a personal pre-operative planning. For the finite element method analysis, a geometrical model of a tibia from a cadaver was three – dimensionally scanned and the tibial component, polyethylene and cement, were three-dimensionally shaped in Computer-Aided Design program using material data such as Young modulus (gigapascal – GPa) and the Poisson coefficient. The analysis determined the equivalent von Mises stress, the maximum displacement of the components and the equivalent von Mises deformation. The results showed that equivalent tension and deformation have higher values in the tibia and the polyethylene, which deform faster than cement and the tibial component. In our study, we chose to simulate the tibial resection at a cutting angle ± 1.5° from neutral positioning (which is represented in frontal plane by the perpendicular on the mechanical axis and in sagittal plane by the posterior slope of 7 degree) in frontal and sagittal plane in order to find the minimum threshold from which the tibial component malalignment may begin to determine unfavorable effects. Results. Our results have shown detrimental effects begin to appear for the polyethene component at -1.5° in frontal plane, and the rest of the components at 1.5° in sagittal plane. Conclusion. This finding leads us to propose preoperative planning based on personal calculus of predefined angles, which may show the surgeon the optimal implantation position of the tibial component

    Medial Opening Wedge High Tibial Osteotomy in Knee Osteoarthritis—A Biomechanical Approach

    No full text
    This paper provides an analysis from a biomechanical perspective of the medial opening wedge high tibial osteotomy surgery, a medical procedure commonly used in treating knee osteoarthritis. The aim of this research is to improve the analysed surgical strategy by establishing optimal values for several very important parameters for the geometric planning of this type of surgical intervention. The research methods used are numerical and experimental. We used finite element, a numerical method used to study the intraoperative behavior of the CORA area for different positions of the initiation point of the cut of the osteotomy plane and for different correction angles. We also used an experimental method in order to determine the maximum force which causes the occurrence of cracks or microcracks in the CORA area. This helped us to determine the stresses, the maximum forces, and the force-displacement variations in the hinge area, elements that allowed us to identify the optimal geometric parameters for planning the surgery
    corecore