4 research outputs found
Precursor B-ALL cell lines differentially respond to syk inhibition by entospletinib
Background: Impaired B-cell receptor (BCR) function has been associated with the pro-gress of several B-cell malignancies. The spleen tyrosine kinase (SYK) represents a potential therapeutic target in a subset of B-cell neoplasias. In precursor B-acute lymphoblastic leukemia (B-ALL), the pathogenic role and therapeutic potential of SYK is still controversially discussed. We evaluate the application of the SYK inhibitor entospletinib (Ento) in pre-and pro-B-ALL cell lines, character-izing the biologic and molecular effects. Methods: SYK expression was characterized in pre-B-ALL (NALM-6) and pro-B-ALL cell lines (SEM and RS4;11). The cell lines were exposed to different Ento concentrations and the cell biological response analyzed by proliferation, metabolic activity, apop-tosis induction, cell-cycle distribution and morphology. BCR pathway gene expression and protein modulations were further characterized. Results: Ento significantly induced anti-proliferative and pro-apoptotic effects in NALM-6 and SEM, while barely affecting RS4;11. Targeted RNAseq revealed pronounced gene expression modulation only in NALM-6, while Western Blot analyses demonstrated that vital downstream effector proteins, such as pAKT, pERK, pGSK3β, p53 and BCL-6, were affected by Ento exposure in the inhibitor-sensitive cell lines. Conclusion: Different acting modes of Ento, independent of pre-BCR dependency, were characterized, unexpected in SEM. Ac-cordingly, SYK classifies as a potential target structure in a subset of pro-B-ALLs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Preparation and In Vitro Characterization of <i>Lactococcus lactis</i>-Loaded Alginate Particles as a Promising Delivery Tool for Periodontal Probiotic Therapy
Probiotic microorganisms are used in a variety of food supplements and medical formulations to promote human health. In periodontal therapy, probiotics are mainly used in the form of gels, tablets or rinses that often tend to leak from the periodontal pocket, resulting in a strongly reduced therapeutic effect. In this pilot in vitro study, we present biodegradable alginate-based particles as an alternative, highly efficient system for a periodontal delivery of probiotic bacteria to the inflammation site. For this purpose, Lactococcus (L.) lactis was encapsulated using a standardized pump-controlled extrusion-dripping method. Time-dependent bacterial release in artificial saliva was investigated over 9 days. The effect of freeze drying was explored to ensure long-term storage of L. lactis-loaded particles. Additionally, the particles were bound to dentin surface using approved bioadhesives and subjected to shear stress in a hydrodynamic flow chamber that mimics the oral cavity in vitro. Thus, round particles within the range of 0.80–1.75 mm in radius could be produced, whereby the diameter of the dripping tip had the most significant impact on the size. Although both small and large particles demonstrated a similar release trend of L. lactis, the release rate was significantly higher in the former. Following lyophilization, particles could restore their original shape within 4 h in artificial saliva; thereby, the bacterial viability was not affected. The attachment strength to dentin intensified by an adhesive could resist forces between 10 and 25 N/m2. Full degradation of the particles was observed after 20 days in artificial saliva. Therefore, alginate particles display a valuable probiotic carrier for periodontal applications that have several crucial advantages over existing preparations: a highly stable form, prolonged continuous release of therapeutic bacteria, precise manufacturing according to required dimensions at the application site, strong attachment to the tooth with low risk of dislocation, high biocompatibility and biodegradability
Sarcomeric network analysis of ex vivo cultivated human atrial appendage tissue using super-resolution microscopy
Abstract Investigating native human cardiac tissue with preserved 3D macro- and microarchitecture is fundamental for clinical and basic research. Unfortunately, the low accessibility of the human myocardium continues to limit scientific progress. To overcome this issue, utilizing atrial appendages of the human heart may become highly beneficial. Atrial appendages are often removed during open-heart surgery and can be preserved ex vivo as living tissue with varying durability depending on the culture method. In this study, we prepared living thin myocardial slices from left atrial appendages that were cultured using an air-liquid interface system for overall 10 days. Metabolic activity of the cultured slices was assessed using a conventional methyl thiazolyl tetrazolium (MTT) assay. To monitor the structural integrity of cardiomyocytes within the tissue, we implemented our recently described super-resolution microscopy approach that allows both qualitative and quantitative in-depth evaluation of sarcomere network based on parameters such as overall sarcomere content, filament size and orientation. Additionally, expression of mRNAs coding for key structural and functional proteins was analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR). Our findings demonstrate highly significant disassembly of contractile apparatus represented by degradation of α -actinin filaments detected after three days in culture, while metabolic activity was constantly rising and remained high for up to seven days. However, gene expression of crucial cardiac markers strongly decreased after the first day in culture indicating an early destructive response to ex vivo conditions. Therefore, we suggest static cultivation of living myocardial slices derived from left atrial appendage and prepared according to our protocol only for short-termed experiments (e.g. medicinal drug testing), while introduction of electro-mechanical stimulation protocols may offer the possibility for long-term integrity of such constructs
Precursor B-ALL Cell Lines Differentially Respond to SYK Inhibition by Entospletinib
Background: Impaired B-cell receptor (BCR) function has been associated with the progress of several B-cell malignancies. The spleen tyrosine kinase (SYK) represents a potential therapeutic target in a subset of B-cell neoplasias. In precursor B-acute lymphoblastic leukemia (B-ALL), the pathogenic role and therapeutic potential of SYK is still controversially discussed. We evaluate the application of the SYK inhibitor entospletinib (Ento) in pre- and pro-B-ALL cell lines, characterizing the biologic and molecular effects. Methods: SYK expression was characterized in pre-B-ALL (NALM-6) and pro-B-ALL cell lines (SEM and RS4;11). The cell lines were exposed to different Ento concentrations and the cell biological response analyzed by proliferation, metabolic activity, apoptosis induction, cell-cycle distribution and morphology. BCR pathway gene expression and protein modulations were further characterized. Results: Ento significantly induced anti-proliferative and pro-apoptotic effects in NALM-6 and SEM, while barely affecting RS4;11. Targeted RNAseq revealed pronounced gene expression modulation only in NALM-6, while Western Blot analyses demonstrated that vital downstream effector proteins, such as pAKT, pERK, pGSK3β, p53 and BCL-6, were affected by Ento exposure in the inhibitor-sensitive cell lines. Conclusion: Different acting modes of Ento, independent of pre-BCR dependency, were characterized, unexpected in SEM. Accordingly, SYK classifies as a potential target structure in a subset of pro-B-ALLs