12 research outputs found

    Emerging role of the calcium-activated, small conductance, SK3 K <sup>+</sup> channel in distal tubule function: Regulation by TRPV4

    Get PDF
    The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K + channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+- dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+- affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion. © 2014 Berrout et al

    Af17 Deficiency Increases Sodium Excretion and Decreases Blood Pressure

    No full text
    The putative transcription factor AF17 upregulates the transcription of the epithelial sodium channel (ENaC) genes, but whether AF17 modulates sodium homeostasis and BP is unknown. Here, we generated Af17-deficient mice to determine whether deletion of Af17 leads to sodium wasting and low BP. Compared with wild-type mice, Af17-deficient mice had lower BP (11 mmHg), higher urine volume, and increased sodium excretion despite mildly increased plasma concentrations of aldosterone. Deletion of Af17 led to increased dimethylation of histone H3 K79 and reduced ENaC function. The attenuated function of ENaC resulted from decreased ENaC mRNA and protein expression, fewer active channels, lower open probability, and reduced effective activity. In contrast, inducing high levels of plasma aldosterone by a variety of methods completely compensated for Af17 deficiency with respect to sodium handling and BP. Taken together, these data identify Af17 as a potential locus for the maintenance of sodium and BP homeostasis and suggest that a particular histone modification is directly linked to these processes. Af17-mediated regulation of BP is largely, but not exclusively, the result of modulating ENaC, suggesting it has potential as a therapeutic target for the control of BP

    Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction

    Get PDF
    The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada−/− mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund’s adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets

    Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone

    No full text
    Apical release of ATP and UTP can activate P2Y2 receptors in the aldosterone-sensitive distal nephron (ASDN) and inhibit the open probability (Po) of the epithelial sodium channel (ENaC). Little is known, however, about the regulation and physiological relevance of this system. Patch-clamp studies in freshly isolated ASDN provide evidence that increased dietary Na+ intake in wild-type mice lowers ENaC Po, consistent with a contribution to Na+ homeostasis, and is associated with increased urinary concentrations of UTP and the ATP hydrolytic product, ADP. Genetic deletion of P2Y2 receptors in mice (P2Y2−/−; littermates to wild-type mice) or inhibition of apical P2Y-receptor activation in wild-type mice prevents dietary Na+-induced lowering of ENaC Po. Although they lack suppression of ENaC Po by dietary NaCl, P2Y2−/− mice do not exhibit NaCl-sensitive blood pressure, perhaps as a consequence of compensatory down-regulation of aldosterone levels. Consistent with this hypothesis, clamping mineralocorticoid activity at high levels unmasks greater ENaC activity and NaCl sensitivity of blood pressure in P2Y2−/− mice. The studies indicate a key role of the apical ATP/UTP-P2Y2-receptor system in the inhibition of ENaC Po in the ASDN in response to an increase in Na+ intake, thereby contributing to NaCl homeostasis and blood pressure regulation.—Pochynyuk, O., Rieg, T., Bugaj, V., Schroth, J., Fridman, A., Boss, G. R., Insel, P. A., Stockand, J. D., Vallon, V. Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone

    Acute Cholesterol-induced Anti-natriuretic Effects: ROLE OF EPITHELIAL Na+ CHANNEL ACTIVITY, PROTEIN LEVELS, AND PROCESSING*

    No full text
    The epithelial Na+ channel (ENaC) is modulated by membrane lipid composition. However, the effect of an in vivo change of membrane composition is unknown. We examined the effect of a 70-day enhanced cholesterol diet (ECD) on ENaC and renal Na+ handling. Rats were fed a standard chow or one supplemented with 1% cholesterol and 0.5% cholic acid (ECD). ECD animals exhibited marked anti-diuresis and anti-natriuresis (40 and 47%), which peaked at 1–3 weeks. Secondary compensation returned urine output and urinary Na+ excretion to control levels by week 10. During these initial changes, there were no accompanying effects on systolic blood pressure, serum creatinine, or urinary creatinine excretion, indicating that the these effects of ECD preceded those which modify renal filtration and blood pressure. The effects of ECD on ENaC were evaluated by measuring the relative protein content of α, β, and γ subunits. α and γ blots were further examined for subunit cleavage (a process that activates ENaC). No significant changes were observed in α and β levels throughout the study. However, levels of cleaved γ were elevated, suggesting that ENaC was activated. The changes of γ persisted at week 10 and were accompanied by additional subunit fragments, indicating potential changes of γ-cleaving proteases. Enhanced protease activity, and specifically that which could act on the second identified cleavage site in γ, was verified in a newly developed urinary protease assay. These results predict enhanced ENaC activity, an effect that was confirmed in patch clamp experiments of principal cells of split open collecting ducts, where ENaC open probability was increased by 40% in the ECD group. These data demonstrate a complex series of events and a new regulatory paradigm that is initiated by ECD prior to the onset of elevated blood pressure. These events lead to changes of renal Na+ handling, which occur in part by effects on extracellular γ-ENaC cleavage
    corecore