67 research outputs found
Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations
Multipoint secant and interpolation methods are effective tools for solving
systems of nonlinear equations. They use quasi-Newton updates for approximating
the Jacobian matrix. Owing to their ability to more completely utilize the
information about the Jacobian matrix gathered at the previous iterations,
these methods are especially efficient in the case of expensive functions. They
are known to be local and superlinearly convergent. We combine these methods
with the nonmonotone line search proposed by Li and Fukushima (2000), and study
global and superlinear convergence of this combination. Results of numerical
experiments are presented. They indicate that the multipoint secant and
interpolation methods tend to be more robust and efficient than Broyden's
method globalized in the same way
A Dual Active-Set Algorithm for Regularized Monotonic Regression
Monotonic (isotonic) regression is a powerful tool used for solving a wide range of important applied problems. One of its features, which poses a limitation on its use in some areas, is that it produces a piecewise constant fitted response. For smoothing the fitted response, we introduce a regularization term in the monotonic regression, formulated as a least distance problem with monotonicity constraints. The resulting smoothed monotonic regression is a convex quadratic optimization problem. We focus on the case, where the set of observations is completely (linearly) ordered. Our smoothed pool-adjacent-violators algorithm is designed for solving the regularized problem. It belongs to the class of dual active-set algorithms. We prove that it converges to the optimal solution in a finite number of iterations that does not exceed the problem size. One of its advantages is that the active set is progressively enlarging by including one or, typically, more constraints per iteration. This resulted in solving large-scale test problems in a few iterations, whereas the size of that problems was prohibitively too large for the conventional quadratic optimization solvers. Although the complexity of our algorithm grows quadratically with the problem size, we found its running time to grow almost linearly in our computational experiments
Необходимость изучения экологической медицины в высших медицинских учебных заведениях
Optimization problems with cardinality constraints are very difficult mathematical programs which are typically solved by global techniques from discreteoptimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between thelocal minima is also discussed in detail. Since our reformulation is a mini-mization problem in continuous variables, it allows to apply ideas from thatfield to cardinality-constrained problems. Here, in particular, we therefore also derive suitable stationarity conditions and suggest an appropriate regularization method for the solution of optimization problems with cardinalityconstraints. This regularization method is shown to be globally convergentto a Mordukhovich-stationary point. Extensive numerical results are given to illustrate the behavior of this method
Formation of public strategic planning in Ukraine
It is sometimes the case that a theory proposes that the population means on two variables should have the same rank order across a set of experimental conditions. This paper presents a test of this hypothesis. The test statistic is based on the coupled monotonic regression algorithm developed by the authors. The significance of the test statistic is determined by comparison to an empirical distribution specific to each case, obtained via non-parametric or semi-parametric bootstrap. We present an analysis of the power and Type I error control of the test based on numerical simulation. Partial order constraints placed on the variables may sometimes be theoretically justified. These constraints are easily incorporated into the computation of the test statistic and are shown to have substantial effects on power. The test can be applied to any form of data, as long as an appropriate statistical model can be specified.free access is valid until January 8, 2016:http://authors.elsevier.com/a/1S3XC53naPWGhFunding agencies: Australian Research Council [0877510, 0878630, 110100751, 130101535]; National Science Foundation [1256959]; Linkoping University</p
Характеристика эффективности воздействия Тенотена и Ново-пассита на пациентов старших возрастных групп на стоматологическом приеме
НОВО-ПАССИТОРТОПЕДИЧЕСКАЯ СТОМАТОЛОГИЯСТАРЕНИЕТЕНОТЕ
Донозологическая диагностика в додипломной подготовке врача
ОБРАЗОВАНИЕ МЕДИЦИНСКОЕВУЗЫМЕДИЦИНСКИЕ УЧЕБНЫЕ ЗАВЕДЕНИЯОБРАЗОВАНИЕ МЕДИЦИНСКОЕ, ПРЕДДИПЛОМНОЕДОНОЗОЛОГИЧЕСКАЯ ДИАГНОСТИКАПОДГОТОВКА ВРАЧЕ
Positioning unmanned aerial vehicles as communication relays for surveillance tasks
When unmanned aerial vehicles (UAVs) are used to survey distant targets, it is important to transmit sensor information back to a base station. As this communication often requires high uninterrupted bandwidth, the surveying UAV often needs a free line-of-sight to the base station, which can be problematic in urban or mountainous areas. Communication ranges may also be limited, especially for smaller UAVs. Though both problems can be solved through the use of relay chains consisting of one or more intermediate relay UAVs, this leads to a new problem: Where should relays be placed for optimum performance? We present two new algorithms capable of generating such relay chains, one being a dual ascent algorithm and the other a modification of the Bellman-Ford algorithm. As the priorities between the number of hops in the relay chain and the cost of the chain may vary, we calculate chains of different lengths and costs and let the ground operator choose between them. Several different formulations for edge costs are presented. In our test cases, both algorithms are substantially faster than an optimized version of the original Bellman-Ford algorithm, which is used for comparison
- …