42 research outputs found

    A maternal low protein diet has pronounced effects on mitochondrial gene expression in offspring liver and skeletal muscle; protective effect of taurine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low birth weight is associated with an increased risk of developing impaired glucose tolerance, and eventually type 2 diabetes in adult life. Gestational protein restriction in rodents gives rise to a low birth weight phenotype in the offspring.</p> <p>Results</p> <p>We examined gene expression changes in liver and skeletal muscle of mice subjected to gestational protein restriction (LP) or not (NP), with or without taurine supplementation in the drinking water. LP offspring had a 40% lower birth weight than NP offspring, with taurine preventing half the decrease. Microarray gene expression analysis of newborn mice revealed significant changes in 2012 genes in liver and 967 genes in skeletal muscle of LP offspring. Taurine prevented 30% and 46% of these expression changes, respectively. Mitochondrial genes, especially those involved with oxidative phosphorylation, were more abundantly changed than other genes. The mitochondrial genes were mainly upregulated in liver, but downregulated in skeletal muscle, despite no change in citrate synthase activity in either tissue. Taurine preferentially rescued genes concerned with fatty acid metabolism in liver and with oxidative phosphorylation and TCA cycle in skeletal muscle. A mitochondrial signature was seen in the liver of NP offspring with taurine supplementation, as gene sets for mitochondrial ribosome as well as lipid metabolism were over represented in 4-week-old offspring subjected to gestational taurine supplementation. Likewise, 11 mitochondrial genes were significantly upregulated by gestational taurine supplementation in 4-week-old NP offspring.</p> <p>Conclusions</p> <p>Gestational protein restriction resulted in lower birth weight associated with significant gene expression changes, which was different in liver and muscle of offspring. However, a major part of the birth weight decrease and the expression changes were prevented by maternal taurine supplementation, implying taurine is a key factor in determining expression patterns during development and in that respect also an important component in metabolic fetal programming.</p

    Low expression of IL-18 and IL-18 receptor in human skeletal muscle is associated with systemic and intramuscular lipid metabolism:Role of HIV lipodystrophy

    Get PDF
    Interleukin (IL)-18 is involved in regulation of lipid and glucose metabolism. Mice lacking whole-body IL-18 signalling are prone to develop weight gain and insulin resistance, a phenotype which is associated with impaired fat oxidation and ectopic skeletal muscle lipid deposition. IL-18 mRNA is expressed in human skeletal muscle but a role for IL-18 in muscle has not been identified. Patients with HIV-infection and lipodystrophy (LD) are characterized by lipid and glucose disturbances and increased levels of circulating IL-18. We hypothesized that skeletal muscle IL-18 and IL-18 receptor (R) expression would be altered in patients with HIV-lipodystrophy.Twenty-three HIV-infected patients with LD and 15 age-matched healthy controls were included in a cross-sectional study. Biopsies from the vastus lateralis muscle were obtained and IL-18 and IL-18R mRNA expression were measured by real-time PCR and sphingolipids (ceramides, sphingosine, sphingosine-1-Phosphate, sphinganine) were measured by HPLC. Insulin resistance was assessed by HOMA and the insulin response during an OGTT.Patients with HIV-LD had a 60% and 54% lower level of muscular IL-18 and IL-18R mRNA expression, respectively, compared to age-matched healthy controls. Patients with HIV-LD had a trend towards increased levels of ceramide (18.3±4.7 versus 14.8±3.0,p = 0.06) and sphingosine (0.41±0.13 versus 0.32±0.07, and lower level of sphinganine (p = 0.06). Low levels of muscle IL-18 mRNA correlated to high levels of ceramides (r = -0.31, p = 0.038) and sphingosine-1P (r = -0.29, p = 0.046) in skeletal muscle, whereas such a correlation was not found in healthy controls. Low expression of IL-18 mRNA in skeletal muscle correlated to elevated concentration of circulating triglycerides (Rp = -0.73, p<0.0001). Neither muscle expression of IL-18 mRNA or ceramide correlated to parameters of insulin resistance.IL-18 (mRNA) in skeletal muscle appears to be involved in the regulation of intramuscular lipid metabolism and hypertriglyceridemia

    Calprotectin — A Novel Marker of Obesity

    Get PDF
    BACKGROUND: The two inflammatory molecules, S100A8 and S100A9, form a heterodimer, calprotectin. Plasma calprotectin levels are elevated in various inflammatory disorders. We hypothesized that plasma calprotectin levels would be increased in subjects with low-grade systemic inflammation i.e. either obese subjects or subjects with type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Plasma calprotectin and skeletal muscle S100A8 mRNA levels were measured in a cohort consisting of 199 subjects divided into four groups depending on presence or absence of type 2 diabetes (T2D), and presence or absence of obesity. There was a significant interaction between obesity and T2D (p = 0.012). Plasma calprotectin was increased in obese relative to non-obese controls (p<0.0001), whereas it did not differ between obese and non-obese patients with T2D (p = 0.62). S100A8 mRNA levels in skeletal muscle were not influenced by obesity or T2D. Multivariate regression analysis (adjusting for age, sex, smoking and HOMA2-IR) showed plasma calprotectin to be strongly associated with BMI, even when further adjusted for fitness, CRP, TNF-alpha or neutrophil number. CONCLUSIONS/SIGNIFICANCE: Plasma calprotectin is a marker of obesity in individuals without type 2 diabetes
    corecore