3 research outputs found

    T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice.

    Get PDF
    Chronic lymphocytic leukaemia (CLL) cells require microenvironmental support for their proliferation. This can be recapitulated in highly immunocompromised hosts in the presence of T cells and other supporting cells. Current primary CLL xenograft models suffer from limited duration of tumour cell engraftment coupled with gradual T-cell outgrowth. Thus, a greater understanding of the interaction between CLL and T cells could improve their utility. In this study, using two distinct mouse xenograft models, we investigated whether xenografts recapitulate CLL biology, including natural environmental interactions with B-cell receptors and T cells, and whether manipulation of autologous T cells can expand the duration of CLL engraftment. We observed that primary CLL xenografts recapitulated both the tumour phenotype and T-cell repertoire observed in patients and that engraftment was significantly shorter for progressive tumours. A reduction in the number of patient T cells that were injected into the mice to 2-5% of the initial number or specific depletion of CD8+ cells extended the limited xenograft duration of progressive cases to that characteristic of indolent disease. We conclude that manipulation of T cells can enhance current CLL xenograft models and thus expand their utility for investigation of tumour biology and pre-clinical drug assessment

    Targeting the Ataxia Telangiectasia Mutated-null Phenotype in Chronic Lymphocytic Leukemia with Pro-oxidants

    Get PDF
    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumours with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia

    一氧化氮在神经退行性疾病中的作用 : 非类固醇性抗炎药的治疗前景

    No full text
    corecore