8 research outputs found

    Cytotoxic Activity of Triazole-Containing Alkyl ß-D-Glucopyranosides on a Human T-Cell Leukemia Cell Line

    Get PDF
    BACKGROUND: Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals, detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated. RESULTS: We synthesized a series of triazole-linked (fluoro)alkyl β-glucopyranosides using the copper-catalyzed azide-alkyne reaction, one of many popular click reactions that enable efficient preparation of structurally diverse compounds, and investigate the toxicity of this novel class of surfactant in the Jurkat cell line. Similar to other carbohydrate surfactants, the cytotoxicity of the triazole-linked alkyl β-glucopyranosides was low, with IC50 values decreasing from 1198 to 24 μM as the hydrophobic tail length increased from 8 to 16 carbons. The two alkyl β-glucopyranosides with the longest hydrophobic tails caused apoptosis by mechanisms involving mitochondrial depolarization and caspase-3 activation. CONCLUSIONS: Triazole-linked, glucose-based surfactants 4a-g and other carbohydrate surfactants may cause apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade; however, additional studies are needed to fully explore the molecular mechanisms of their toxicity. Graphical AbstractTriazole-linked, glucose-based surfactants cause apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade

    Cytotoxic activity of triazole-containing alkyl β-D-glucopyranosides on a human T-cell leukemia cell line

    Get PDF
    BACKGROUND: Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals, detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated. RESULTS: We synthesized a series of triazole-linked (fluoro)alkyl β-glucopyranosides using the copper-catalyzed azide-alkyne reaction, one of many popular “click” reactions that enable efficient preparation of structurally diverse compounds, and investigate the toxicity of this novel class of surfactant in the Jurkat cell line. Similar to other carbohydrate surfactants, the cytotoxicity of the triazole-linked alkyl β-glucopyranosides was low, with IC(50) values decreasing from 1198 to 24 μM as the hydrophobic tail length increased from 8 to 16 carbons. The two alkyl β-glucopyranosides with the longest hydrophobic tails caused apoptosis by mechanisms involving mitochondrial depolarization and caspase-3 activation. CONCLUSIONS: Triazole-linked, glucose-based surfactants 4a-g and other carbohydrate surfactants may cause apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade; however, additional studies are needed to fully explore the molecular mechanisms of their toxicity. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13065-014-0072-1) contains supplementary material, which is available to authorized users

    Neuere polarographische und voltammetrische Verfahren zur Spurenanalyse

    No full text
    corecore